Return to search

Etude de puits quantiques semiconducteurs par microscopie et spectroscopie à effet tunnel

Des puits quantiques à base d'hétérostructures In0.53 Ga0.47 As/In0.52 Al0.48 As, fabriqués par épitaxie par jets moléculaires sur substrats InP(111)A, sont étudiés par microscopie et spectroscopie à effet tunnel à basse température et sous ultra-vide. La première partie est consacrée à une étude de la surface épitaxiée (111)A de In0.53 Ga0.47 As de type n. Il est découvert que le niveau de Fermi de surface est positionné dans la bande de conduction, à proximité du niveau de Fermi de volume, et peut être partiellement contrôlé en variant la concentration d'impuretés de type n dans le volume. Ce résultat est confirmé en déterminant la relation de dispersion de la bande de conduction en surface. Un tel dépiégeage partiel du niveau de Fermi de surface indique que la densité d'états de surface accepteurs est faible. Il est proposé que ces états proviennent de défauts ponctuels natifs localisés à la surface. La deuxième partie, basée sur les résultats obtenus dans la première partie, est consacrée à une étude de puits quantiques In0.53 Ga0.47 As de surface, déposés sur des barrières In0.52 Al0.48 As selon la direction (111)A. Les mesures sont conduites sur la surface épitaxiée (111)A du puits quantique In0.53 Ga0.47 As, de manière à pouvoir sonder à l'échelle du nanomètre la distribution de densité locale d'états électroniques dans le plan du puits quantique. Il est confirmé que des sous-bandes électroniques sont formées dans le puits quantique, et que la concentration d'électrons dans le puits peut être contrôlée du fait du dépiégeage partiel du niveau de Fermi de surface. Il est découvert qu'un phénomène de percolation d'états localisés survient dans la queue de chaque sous-bande, ce qui indique la présence d'un potentiel désordonné dans le puits quantique. Les seuils de percolation sont déterminés en utilisant un modèle semi-classique. L'origine du potentiel désordonné est attribuée à une distribution aléatoire des défauts ponctuels natifs à la surface du puits quantique. Il est également découvert qu'un état lié apparaît au bas de chaque sous-bande à proximité d'un défaut ponctuel natif de type donneur. L'énergie de liaison et le rayon de Bohr des états liés peuvent être directement déterminés. De plus, il est démontré que l'énergie de liaison et le rayon de Bohr sont fonctions de l'épaisseur du puits quantique, en accord quantitatif avec des calculs variationnels d'impuretés dans le modèle de l'atome d'hydrogène.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00606632
Date07 December 2007
CreatorsPerraud, Simon
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds