Les algèbres d'endomorphismes peuvent remplacer la notion de fibré principal. Dans ce cadre algébrique, les théories de jauge sont reformulées et généralisées, unifiant ainsi connexions ordinaires et champs de Higgs. Un modèle de "Maxwell non commutatif" est construit pour des fibrés non triviaux nécessitant le développement de la notion de structure Riemannienne. Les techniques de la géométrie non commutative utiles à l'étude des algèbres associatives sont présentées et une nouvelle méthode permettant d'obtenir le morphisme de Chern-Weil usuel est développée. Ensuite, les résultats d'une étude sur les connexions non commutatives généralisent ceux connus sur les fibrés symétriques; une extension de l'ansatz de Witten est énoncée. Enfin, une action est proposée pour généraliser le modèle de Born-Infeld à des connexions non commutatives. Les Lagrangiens obtenus sont non polynomiaux et on étudie l'existence de solutions de type solitonique sur quelques exemples explicites.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00010487 |
Date | 20 September 2005 |
Creators | Sérié, Emmanuel |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds