Human-caused emissions of CO2 and other greenhouse gases are an established reason for the climate changes that affect planet Earth. Negative emission technologies (NETs), for example, bio-accelerated silicate weathering bioreactors, seek to capture and store carbon from the atmosphere. Bio-acceleratedsilicate weathering utilizes microorganisms to increase natural silicate weathering processes.This project aimed to evaluate the potential bio-accelerated weathering of two silicate rock types, Basalt Lavagestine, and La Palma lapilli, using a mixture of microorganisms, Bacillus Subtilis, Cupriavidus Metallidurans, Aureobasidium Pullulans, and Suillus Variegatus. Straw was used as an organic carbon and nutrient source for the organisms. There were six types of reactors, biotic, abiotic,and mineral controls for each of the two minerals, with triplicates. The reactors were watered five times a week with 50 mL of autoclaved distilled water, after each week the leachate from each reactor wascollected. Geochemical analyses of all leachates were performed, these were pH, conductivity, alkalinity, and carbon analyses. After the experiment, the mineral grains and straw were examined in a scanning electron microscope (SEM) to observe the growth of organisms and the differences between reactor types.The biotic reactors for both minerals showed signs of enhanced weathering compared to their controls. The geochemical analyses showed that the alkalinity was doubled between the abiotic and biotic reactors for the basalt, and increased by roughly a third for the lapilli. The DIC was tripled for thebiotic basalt and doubled for the biotic lapilli. This indicated increased weathering rates and more sequestered carbon for the biotic reactors. SEM showed growth of fungi and bacteria in all biotic reactors. The extensive growth of fungi and biofilm formation was prominent in the basalt Lavagestineand a possible reason for the increased weathering compared to lapilli. The contrast in the surface structure of the minerals could be a second reason for the result. The two bacteria were colonizing one mineral each, which indicates differences in chemical composition. The C.Metallidurans were observed on the basalt grains and B.Subtilus on the lapilli. This report concludes that bio-enhanced weathering isa promising aspirant for NETs and that the selection of minerals is an important factor.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-502918 |
Date | January 2023 |
Creators | Uebel, Tora, Odelius, Elisabeth |
Publisher | Uppsala universitet, Institutionen för geovetenskaper |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds