Return to search

Etude de la localisation de nanofils de silicium sur des surfaces Si3N4 et SiO2 micro & nanostructurées

Les nanofils de semiconducteurs, d'oxides métalliques ou encore les nanotubes de carbone suscitent beaucoup d'intérêt pour des applications en nanoélectronique, mais également pour le développement de nanocapteurs chimiques ou biologiques. Cet intérêt pour les capteurs est principalement motivé par les propriétés liées aux faibles dimensions radiales et aux forts ratios surface/volume de ces nano-objets qui les rendent extrêmement sensibles aux effets de surface, et par conséquent à leur environnement. Les variations de charges de surface des matériaux en fonction du milieu peuvent également être utilisées comme une voie pour l'auto-organisation de nano-objets. Ce travail s'inscrit dans cette perspective. La voie chimique explorée pour la localisation est compatible avec une intégration de nano-objets a posteriori sur une technologie CMOS silicium. Plus précisément, notre approche " Bottom Up " repose sur les variations de la charge de surface du SiO2 et du Si3N4 en fonction du pH de la solution. Après une revue de littérature sur les points de charge nulle (PZC) des différents isolants selon leurs techniques d'élaboration, nous avons étudié expérimentalement les propriétés de couches de SiO2 thermique et de Si3N4 (LPCVD). Les PZC de ces différents isolants ont été déterminés par des mesures d'impédance électrochimique réalisées sur des structures EIS et couplées avec des mesures d'angle de contact en fonction du pH. Une étude systématique en fonction du pH (1.5 à 4.5) a été réalisée et un protocole expérimental a pu être mis en place pour démontrer la localisation préférentiellement les nanofils de silicium sur Si3N4. Nous avons pu démontrer qu'une localisation quasi parfaite était possible pour un pH compris entre 3 et 3,25 conformément au modèle électrostatique proposé. Le procédé développé présente l'avantage d'être simple, reproductible et peu coûteux. Il utilise une chimie très classique à température ambiante pour localiser des nano-objets silicium sans présenter de risque pour les dispositifs CMOS des niveaux inférieurs.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00961229
Date25 June 2013
CreatorsChamas, Hassan
PublisherINSA de Lyon
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds