• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportement des produits de corrosion dans le circuit primaire des centrales REP - sorption du cobalt et du nickel sur des ferrites représentatifs

Martin Cabanas, Bruna 26 November 2010 (has links) (PDF)
La corrosion des parties métalliques du circuit primaire des centrales REP engendre la formation de produits de corrosion. Ceux-ci peuvent circuler dans le circuit primaire sous forme de particules colloïdales ou d'espèces dissoutes qui peuvent être activées lors de leur passage sous flux puis adhérer sur les parties métalliques des circuits et sur les gaines des assemblages combustible. Le dépôt des particules ou d'ions activés sur les zones hors flux est alors responsable de la contamination surfacique. Afin d'avoir une meilleure maîtrise de la contamination, la caractérisation (surface spécifique, granulométrie, PCN...) des différentes particules présentes dans le circuit primaire ainsi que l'étude des interactions des produits de corrosion entre eux ou avec les parois (adhésion, sorption...) est nécessaire. Les espèces prises en compte dans cette étude sont, pour les particules : les ferrites de cobalt et de nickel ainsi que la magnétite, pour les matériaux du circuit primaire : l'Inconel 690, le Zircaloy 4 et l'acier inoxydable 304L. La sorption du cobalt et du nickel, principaux responsables de la contamination surfacique, sur les différents produits de corrosion a été réalisée expérimentalement et modélisée grâce au code de calcul ECOSAT. L'évolution de leur charge de surface a également été étudiée. Les données obtenues alimenteront, in fine, différents codes permettant la modélisation de la contamination dans les circuits en tenant compte de l'hydraulique. Le phénomène de sorption est en compétition avec celui de précipitation pour des teneurs en ions supérieures à 10-5 M et un pH élevé. Le dépôt des produits de corrosion, ayant subi ou non la sorption, est favorisé sur une large gamme de pH et quelque soit l'épaisseur de la couche d'oxyde à la surface des matériaux métalliques du circuit. La modélisation confirme que l'hydraulique est à prendre en compte lors de l'étude des phénomènes de dépôt.
2

Rôle des argiles dans la préservation et la fossilisation de la Matière Organique ±pétroligène±

Drouin, Sylvain 25 June 2007 (has links) (PDF)
D'après de nombreux auteurs, les interactions argilo-organiques, en environnement aquatique influenceraient le devenir des matières organiques (MO) lors de leur transfert vers le sédiment. Cependant, l'implication des argiles dans les mécanismes de piégeage et de préservation des composés organiques labiles n'a jamais été démontrée. Cette étude a consisté d'une part à tester la fixation de molécules organiques sur des saponites de synthèse, de charge variable, et une montmorillonite naturelle, par des approches in vitro et in vivo en milieu marin et lacustre. Et d'autre part à éprouver la stabilité des assemblages en milieu agressif. Elle montre que le mode de piégeage est restreint à l'adsorption en surface et bordure des argiles. Aucune intercalation n'a été mise en évidence. In vitro, l'adsorption est en grande partie influencée par la nature des molécules organiques et plus spécifiquement celle de leurs groupements fonctionnels. In vivo, en présence de MO naturelles complexes, les argiles privilégient les fractions organiques peu transformées diagénétiquement. La nature et les concentrations des molécules adsorbées dépendent également des propriétés de surface des minéraux. La densité des charges cationiques induit des conflits stériques qui conduisent, dans l'environnement lacustre étudié, au piégeage sélectif des molécules aromatiques sur les argiles de basse charge. La grande stabilité des assemblages argilo-organiques, éprouvée par des attaques alcalines, indique l'existence de liaisons fortes, probablement multiples, et pérennes entre argiles et MO. En adsorbant durablement les molécules organiques, les argiles réduisent leur disponibilité aux agents agressifs dans les colonnes d'eau. A l'issu de cette étude, il ressort que les interactions argilo-organiques sont un mode de préservation à part entière, au même titre que les processus de dégradation-recondensation, de sulfuration naturelle ou de préservation sélective intrinsèque, permettant le transfert de MO métabolisables vers les sédiments.
3

Interaction of Rydberg hydrogen atoms with metal surfaces

So, Eric January 2011 (has links)
This thesis presents a theoretical and experimental investigation of the interaction of electronically excited Rydberg hydrogen atoms with metal surfaces and the associated charge-transfer process. As a Rydberg atom approaches a metal surface, the energies of the Rydberg states are perturbed by the surface potential generated by the image charges of the Rydberg electron and core. At small atom-surface separations, the Rydberg atom may be ionised by resonant charge transfer of the Rydberg electron to the continuum of delocalised unoccupied metal states, with which the Rydberg electron is degenerate in energy. Typically, this ‘surface ionisation’ can be measured by extracting the remaining positively charged ion-cores with externally applied electric fields. By applying various levels of theory, from classical to fully time-dependent quantum calculations, this thesis explores various experimentally relevant effects on the charge-transfer process, such as the magnitude and direction of the externally applied electric field, the atom collisional velocity, the presence of local surface stray fields and electronically structured surfaces. The theoretical results give insight into the previous experimental work carried out for the xenon atom and hydrogen molecule, and point out some of the fundamental differences from the hydrogen atom system. Experiments involving Rydberg hydrogen atoms incident on an atomically flat gold surface, a rough machined aluminium surface and a single crystal copper (100) surface are presented, providing for the first time the opportunity to make a quantitative comparison of theory and experiments. The ability to control the critical distance at which charge-transfer occurs is demonstrated by using Rydberg states of varying dimensions and collisional velocities. By changing the collisional angle of the incident Rydberg beam, the effect of Rydberg trajectory is also investigated. By manipulating the polarisation of the Rydberg electron with electric fields, genuine control over the orientation of the electron density distribution in the charge-transfer process is demonstrated. This property was predicted by the theory and should be unique to the hydrogen atom due to its intrinsic symmetry. By reversing the direction of the electric field with respect to the metal surface, electrons rather than positive ions are detected, with ionisation dynamics that appear to be very different, as predicted by quantum calculations. Experiments involving the single crystal Cu(100) surface also suggests possible resonance effects from image states embedded in the projected bandgap which are shown from quantum calculations to play an important role in the surface charge transfer of electronically structured metal substrates. The experimental technique developed in this work provides some exciting future applications to study quantum confinement effects with thin films, nanoparticles and other bandgap surfaces. The ability to control the Rydberg orbital size, electronic energy, collisional velocity and orientation in the charge-transfer process will provide novel ways of probing the surface’s electronic and physical structure, as well as being a valuable feature in offering new opportunities for controlling reactive processes at metallic surfaces.
4

Exfoliation et réempilement d'oxydes lamellaires à base de manganèse et de cobalt pour électrodes de supercondensateurs / Exfoliation and restacking of manganese and cobalt based lamellar oxides for supercapacitor electrodes

Tang, Celine 01 December 2017 (has links)
La forte progression démographique mondiale induit une demande d’énergietoujours en hausse. Ceci se traduit par un fort développement de nouvelles énergiesrenouvelables qui nécessitent, de par leur nature intermittente, des dispositifs de stockagede l’énergie. Parmi eux les supercondensateurs permettent un stockage électrostatique decharges (supercondensateurs à base de carbones activés), mais certains systèmes, ditspseudocapacitifs, font en outre intervenir des réactions redox rapides de surface.L’association des deux systèmes permettent d’accéder à des propriétés intéressantes, enparticulier pour le système MnO2/carbone activé. Cependant, les oxydes de manganèse sontd’excellents matériaux pseudocapacitifs mais assez peu conducteurs électroniques.L’objectif de ce travail est d’améliorer cette conductivité en les associant avec des oxydes decobalt conducteurs. Pour cela, une approche « architecturale » de synthèse de matériaux aété choisie. En partant d’oxydes de Mn et de Co lamellaires, ceux-ci sont exfoliés pourobtenir des nanofeuillets de nature différente. S’ensuit une étape de réempilement pouraboutir à un matériau lamellaire alterné. L’analyse structurale et morphologique desmatériaux prouve que des nanocomposites très finement divisés sont obtenus. Lespropriétés électrochimiques obtenues pour ces nanocomposites s’avèrent meilleures quecelles des matériaux initiaux, tant en densité d’énergie qu’en puissance. Cette stratégieoriginale est prometteuse et ouvre la voie à des réempilements de différente nature,notamment le graphène. / The ever increasing demand of renewable energies imposes, due to theirintermittent nature, the development of performant energy storage devices. Supercapacitorsare reliable devices that offer a high power density and numerous investigations are focusingon increasing their energy densities. In particular, asymmetric "metal oxides / activatedcarbons" supercapacitors are possible candidates. The MnO2/carbon system is the mostinvestigated system, due to its capability to work in aqueous medium at potentials up to 2 V,as well as to the low cost and environmental friendliness of manganese. Nevertheless, thissystem suffers from the poor electronic conductivity of manganese. This work reports anoriginal strategy for novel electrode materials involving exfoliation and restacking processesof lamellar “building blocks”: lamellar manganese oxides for their pseudocapacitiveproperties and lamellar cobalt oxyhydroxides for their high electronic conductivity. Thematerial engineering strategy focuses on the exfoliation of the lamellar materials intooligolamellae. The obtained suspensions are then restacked through various strategies andnew well defined mixed oxides are obtained. After structural and morphologicalcharacterization, it is clear that these nanocomposites present an intimate mix of the twoinitial phases. The electrochemical responses are hereby enhanced, proving the intertwinedrelationship between structure, morphology and properties. Furthermore, this architecturalapproach of building novel electrode materials is original and efficient and can easily betransposed to other “building blocks”, including graphene.
5

Impact de nanophytoglycogènes neutres et chargés sur les propriétés biophysiques du surfactant pulmonaire

Gravel Tatta, Laurianne 08 1900 (has links)
Les poumons présentent de nombreux avantages en tant que voie d’administration de médicaments. Ils possèdent une grande surface (70-100 m2) pour l’adsorption de molécules et de particules, une mince barrière épithéliale, une faible acidité ainsi qu’un système vasculaire sous-jacent abondant. L’administration par inhalation est une approche prometteuse pour le traitement du cancer des poumons et des infections microbiennes comorbides dans 33% des cas puisqu’elle permet la livraison ciblée d’agents chimiothérapeutiques. Les nanoparticules sont des vecteurs idéaux d’acheminements ciblés de médicaments avec des avantages tels qu’une stabilité élevée/une longue durée de conservation ainsi qu’une capacité de transport élevée. Les nanoparticules inhalées atteignant les alvéoles pulmonaires interagissent avec le surfactant pulmonaire. Ce mélange de lipides et de protéines tapisse l’interface eau/air des alvéoles servant ainsi de barrière. L’interaction physique et chimique des nanoparticules avec le surfactant pulmonaire déterminera leur clairance, rétention et translocation. Nous proposons l’utilisation de nanoparticules de phytoglycogène, extraites de maïs sans OGM, pour l’administration pulmonaire d’un peptide anticancéreux et antimicrobien à double action dont l’administration par voie orale ou par injection est problématique. Le nanophytoglycogène, composé de molécules de glucose, est non-biopersistant, non-toxique et est certifié GRAS (Generally Recognized as Safe) par le Food and Drug Administration pour l’ingestion. Cependant, son innocuité pour l’inhalation reste à déterminer. Avant de déterminer l’efficacité du nanophytoglycogène à des fins de nanotransporteur organique pour la délivrance par aérosol de peptides thérapeutiques, son impact sur les propriétés biophysiques et sur la structure de phase du surfactant pulmonaire doit premièrement être caractérisé. L’objectif du projet est d’étudier les effets de nanophytoglycogène de différentes charges sur les propriétés physicochimiques de modèles du surfactant pulmonaire en utilisant les monocouches Langmuir. Plus précisément, il est question d’étudier les effets des nanoparticules sur l’activité de surface, la morphologie, la réversibilité ainsi que l’épaisseur du film du surfactant pulmonaire. L’imagerie par microscopie à angle de Brewster (BAM, Brewster Angle Microscopy), les isothermes (pression de surface vs aire moléculaire) ainsi que l’ellipsométrie à l’interface eau-air permettent une conjecture des effets néfastes potentielles du nanophytoglycogène sur les poumons. À l’aide de ces techniques, il a été possible d’étudier des monocouches de phospholipides et de protéines, représentant le surfactant pulmonaire. En présence de nanoparticules anioniques et quasi-neutres, les différentes monocouches ne subissaient aucune perturbation. Cependant, les résultats ont démontré que les nanoparticules cationiques se lient aux phospholipides anioniques, ce qui augmente l’épaisseur de la monocouche et ainsi le travail requis pour effectuer un cycle respiratoire. Ces travaux ont démontré l’importance de la charge des nanomatériaux lors de leur interaction avec le surfactant pulmonaire. De plus, les résultats de cette étude ont aussi permis de classer les nanophytoglycogènes quasi-neutre et anionique comme étant des vecteurs de médicaments potentiels. / The human lungs present many advantages as a drug delivery route, namely a high surface area (70-100 m2) for the adsorption of molecular species and particles, a thin epithelial barrier, an abundant underlying vasculature, and low acidity. Inhalation delivery is expected to be an ideal approach for the treatment of lung cancer and associated pulmonary infection (33% of cases) as it allows the site-specific physical delivery of chemotherapeutic. Nanoparticle carriers broaden the options for targeted drug delivery systems with advantages including high stability/long shelf life and high carrier capacity. In the alveoli, inhaled nanoparticles interact with lung (pulmonary) surfactant, a lipid/protein mixture that lines the alveolar air/fluid interface and serves as a primary barrier to uptake. The physical/chemical interaction of the nanoparticles with the surfactant determines their clearance, retention, and translocation. We propose to use novel phytoglycogen nanoparticles, extracted from non-GMO corn, for the pulmonary delivery of a dual action anticancer and antimicrobial peptide that is problematic to deliver orally or by injection. Nanophytoglycogen, composed of glucose molecules, is non-biopersistent, non-toxic and is GRAS (Generally Recognized as Safe) for oral ingestion. However, its safety for inhalation remains to be determined. Before evaluating the efficacy of nanophytoglycogen to serve as an organic nanocarrier for the aerosol delivery of peptide therapeutics, their impact on the biophysical properties and phase structure of lung surfactant must first be characterized. The objective of the research is to investigate the effect of nanophytoglycogens of different surface charge on the physicochemical properties of pulmonary surfactant model systems using Langmuir monolayers. More specifically, the effect of the nanoparticles on the surface activity, morphology, reversibility, and film thickness of pulmonary surfactant is studied. Isotherms (surface pressure vs. molecular area), BAM (Brewster Angle Microscopy) imaging, and ellipsometry at the air-water interface allow a surmise of the potential adverse effects of nanophytoglycogen on the lungs. Using these techniques, it was possible to study monolayers of phospholipids and proteins, representing the pulmonary surfactant. In the presence of anionic and quasi-neutral iv nanoparticles, the different monolayers didn’t undergo any disturbance. However, the results demonstrated that cationic nanoparticles bind to anionic phospholipids, which increases the thickness of the monolayer and thus the work required to complete a respiratory cycle. This study has demonstrated the importance of nanoparticle’s surface charge during their interaction with pulmonary surfactant. In addition, the results of this study also made it possible to classify the quasi-neutral and anionic nanophytoglycogens as being potential drug vectors.
6

Etude de la localisation de nanofils de silicium sur des surfaces Si3N4 et SiO2 micro & nanostructurées

Chamas, Hassan 25 June 2013 (has links) (PDF)
Les nanofils de semiconducteurs, d'oxides métalliques ou encore les nanotubes de carbone suscitent beaucoup d'intérêt pour des applications en nanoélectronique, mais également pour le développement de nanocapteurs chimiques ou biologiques. Cet intérêt pour les capteurs est principalement motivé par les propriétés liées aux faibles dimensions radiales et aux forts ratios surface/volume de ces nano-objets qui les rendent extrêmement sensibles aux effets de surface, et par conséquent à leur environnement. Les variations de charges de surface des matériaux en fonction du milieu peuvent également être utilisées comme une voie pour l'auto-organisation de nano-objets. Ce travail s'inscrit dans cette perspective. La voie chimique explorée pour la localisation est compatible avec une intégration de nano-objets a posteriori sur une technologie CMOS silicium. Plus précisément, notre approche " Bottom Up " repose sur les variations de la charge de surface du SiO2 et du Si3N4 en fonction du pH de la solution. Après une revue de littérature sur les points de charge nulle (PZC) des différents isolants selon leurs techniques d'élaboration, nous avons étudié expérimentalement les propriétés de couches de SiO2 thermique et de Si3N4 (LPCVD). Les PZC de ces différents isolants ont été déterminés par des mesures d'impédance électrochimique réalisées sur des structures EIS et couplées avec des mesures d'angle de contact en fonction du pH. Une étude systématique en fonction du pH (1.5 à 4.5) a été réalisée et un protocole expérimental a pu être mis en place pour démontrer la localisation préférentiellement les nanofils de silicium sur Si3N4. Nous avons pu démontrer qu'une localisation quasi parfaite était possible pour un pH compris entre 3 et 3,25 conformément au modèle électrostatique proposé. Le procédé développé présente l'avantage d'être simple, reproductible et peu coûteux. Il utilise une chimie très classique à température ambiante pour localiser des nano-objets silicium sans présenter de risque pour les dispositifs CMOS des niveaux inférieurs.
7

Etude de la localisation de nanofils de silicium sur des surfaces Si3N4 et SiO2 micro & nanostructurées / Localization of silicon nanowires on micro and nano structured surfaces of Si3N4 & SiO2

Chamas, Hassan 25 June 2013 (has links)
Les nanofils de semiconducteurs, d’oxides métalliques ou encore les nanotubes de carbone suscitent beaucoup d’intérêt pour des applications en nanoélectronique, mais également pour le développement de nanocapteurs chimiques ou biologiques. Cet intérêt pour les capteurs est principalement motivé par les propriétés liées aux faibles dimensions radiales et aux forts ratios surface/volume de ces nano-objets qui les rendent extrêmement sensibles aux effets de surface, et par conséquent à leur environnement. Les variations de charges de surface des matériaux en fonction du milieu peuvent également être utilisées comme une voie pour l’auto-organisation de nano-objets. Ce travail s’inscrit dans cette perspective. La voie chimique explorée pour la localisation est compatible avec une intégration de nano-objets a posteriori sur une technologie CMOS silicium. Plus précisément, notre approche « Bottom Up » repose sur les variations de la charge de surface du SiO2 et du Si3N4 en fonction du pH de la solution. Après une revue de littérature sur les points de charge nulle (PZC) des différents isolants selon leurs techniques d’élaboration, nous avons étudié expérimentalement les propriétés de couches de SiO2 thermique et de Si3N4 (LPCVD). Les PZC de ces différents isolants ont été déterminés par des mesures d’impédance électrochimique réalisées sur des structures EIS et couplées avec des mesures d’angle de contact en fonction du pH. Une étude systématique en fonction du pH (1.5 à 4.5) a été réalisée et un protocole expérimental a pu être mis en place pour démontrer la localisation préférentiellement les nanofils de silicium sur Si3N4. Nous avons pu démontrer qu’une localisation quasi parfaite était possible pour un pH compris entre 3 et 3,25 conformément au modèle électrostatique proposé. Le procédé développé présente l’avantage d’être simple, reproductible et peu coûteux. Il utilise une chimie très classique à température ambiante pour localiser des nano-objets silicium sans présenter de risque pour les dispositifs CMOS des niveaux inférieurs. / Semiconductor and metal oxides nanowires as well as carbon nanotubes are attractive for Nano electronic applications but also for chemical or biological sensors. This interest is related to the properties of 1D nanostructures with very small diameters and with high surface / volume ratios. The main property of such nanostructures is the high electrostatic sensitivity to their environment. The related surface charge variations as function of the medium may also be used as a way for the nanostructure self-organization. This work has been developed with this perspective. The investigated chemical approach is compatible with a post-integration of nano-objects on silicon CMOS technologies. More precisely, our “Bottom Up” method uses the different surface charges on SiO2 and Si3N4 as a function of the solution pH. After a literature review focused on the Point of Zero Charge (PZC) for insulating materials depending on the fabrication techniques, we have studied experimentally thermal SiO2 and LPCVD Si3N4 layers grown or deposited on silicon. The PZC of our layers have been determined using electrochemical impedance measurements in a EIS configuration. These impedance measurements have been cross correlated with contact angle measurements as function of the solution’s pH. A systematic study as function of pH in the 1.5 – 4.5 range as been carried out and an experimental protocol has been found in order to demonstrate the preferential localization of silicon nanowires on Si3N4. From this study, it is found that a quasi-perfect localization is possible for a pH between 3 and 3.25 as expected from the proposed electrostatic model. Finally, the developed process is low-cost, simple and reproducible which presents important advantages. It uses a very classical chemistry at ambient temperature and allows the localization of silicon nano-objects without any risk for the CMOS devices of the front-end level.

Page generated in 0.0733 seconds