Return to search

Étude de la régénération d’adsorbants par oxydation indirecte / Study of the regeneration of adsorbents by indirect oxidation

Du fait du coût élevé de certains matériaux adsorbants d’intérêt pour le traitement de la micropollution organique, l’étude a porté sur la régénération de matériaux adsorbants de type zéolithes hydrophobes et monolithe de carbone dans le cas de l’adsorption du bisphénol A et du diclofénac comme micropolluants réfractaires. Des procédés d’oxydation avancée impliquant des espèces radicalaires HO• (réaction de Fenton, électro-Fenton) et SO₄• – (activation de persulfate par voie thermique) ont été utilisés pour assurer la régénération des matériaux par désorption et dégradation oxydative des polluants fixés. La production de radicaux HO• au sein de la phase aqueuse circulant au niveau de l’adsorbant n’est pas suffisamment efficace pour sa régénération. Il a donc été envisagé de générer les radicaux au plus près des molécules adsorbées. Au cours de ce travail, une méthode sensible d’analyse par polarographie de H₂O₂ a été développée et validée pour le suivi des expériences avec les procédés mettant en jeu la réaction de Fenton. Pour différentes zéolithes, le catalyseur de la réaction de Fenton à base de fer a été incorporé préalablement dans la zéolithe. Pour le monolithe de carbone, les propriétés de conduction du matériau ont été mises à profit en l’utilisant comme cathode pour l’application du procédé électro-Fenton permettant de produire les radicaux HO• directement au sein du matériau. Cela a conduit à améliorer les performances de la régénération avec toutefois une diminution de son efficacité au cours de cycles successifs adsorption/régénération. / The elimination of organic micropollutants often requires the use of adsorption processes among the water treatments. The aim of our study is to regenerate two expensive materials (hydrophobic zeolites and carbon monoliths) to increase their life expectancy and decrease their investing cost. Two organic contaminants were targeted : diclofenac and bisphenol A, which are refractory pollutants. Advanced oxidation processes involve radical species, HO• (Fenton and electro-Fenton reactions) and SO₄• – (thermal activation of persulfate ion). These oxidants were used to decompose the adsorbed pollutants and thus regenerate the adsorbents. The HO• production, within the core of aqueous phase, did not reach satisfactory regeneration, and a loss of adsorption capacity was observed. Furthermore, during this study, a sensitive polarographic analytical method was developed and validated for the quantification of H₂O₂ in the aqueous phase. This method was used to follow in situ the Fenton reaction. The location of the catalyst in a closer vicinity of the adsorbed species was then optimized and the iron catalyst was impregnated in the host, prior to the adsorption, on different types of hydrophobic zeolites. Concerning carbon monolith, the electro-Fenton process was carried out using the material as the cathode thanks to its electrical conductivity. Consequently, HO• are produced in the porosity of monolith. This latter property enhanced the degradation of adsorbed solutes. The overall performances were increased compared to the homogeneous Fenton process. Nonetheless, a decrease of the adsorption capacities with adsorption-regeneration cycles was observed.

Identiferoai:union.ndltd.org:theses.fr/2019REN1S028
Date11 July 2019
CreatorsDomergue, Lionel
ContributorsRennes 1, Hauchard, Didier
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds