Concurrent training (CT) is defined as the development of both endurance and strength within the same exercise program. CT has been studied for decades, but the results has been diverse. However, very few have studied the effects of CT on the upper body musculature. Hence, this review set out to investigate the effects of combined strength and endurance training (ET) of the upper body on muscle hypertrophy, muscle strength and endurance variables. PubMed was searched with relevant search terms with varying combinations, such as concurrent training, combined strength and endurance training. After scanning the literature, a total of eight articles were included. The results suggest that muscle strength, exercise economy and time to exhaustion can effectively be improved by CT of the upper body. The effect of CT on upper body musculature were unclear. Some of the articles included suggests a decrease in whole body lean mass, which might simply be due to insufficient loading of the lower body musculature. In order to maintain muscle mass during a CT protocol, endurance athletes should aim to perform ST which targets muscles active during ET. However, the limited empiric literature available on CT of the upper body makes a conclusion hard to draw. This review shows that CT of the upper body is yet an unexplored and researchers should further investigate the effects of CT for the musculature of the upper body alone. If we gain more knowledge of the effects from concurrent training of the upper body, it could have several implications, both clinically and in a sport setting.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-67276 |
Date | January 2017 |
Creators | Hansson, Björn |
Publisher | Linnéuniversitetet, Institutionen för idrottsvetenskap (ID) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds