Return to search

Développement de nouveaux matériaux céramiques à base de zircone pour application dentaire / Development of new zirconia based ceramics for dental application

Les céramiques polycristallines pour application dentaire sont aujourd’hui majoritairement des zircones dopées à l’yttrium (Y-TZP). Ce matériau présente des avantages indéniables en terme de résistance à la rupture, de propriétés esthétiques ou encore de ténacité grâce au phénomène de renforcement par transformation de phase. Les problèmes de stabilité de la Y-TZP en présence d’eau peuvent être limités par un travail d’optimisation des poudres, mais la sensibilité intrinsèque du matériau vis-à-vis de l’eau ou des fluides biologiques demeure et représente un risque, spécialement dans le cadre d’applications cliniques. Les matériaux à base de zircone dopée au cérium (Ce-TZP) présentés dans cette étude ont été développés afin de répondre au triple objectif de ténacité, résistance et stabilité. A partir de la Ce-TZP, connue pour sa ténacité et sa stabilité en présence d’eau importantes, un travail d’optimisation de la microstructure a été réalisé afin d’obtenir une résistance à la rupture maximale. Différentes voies ont été explorées afin d’élaborer des microstructures permettant une augmentation de la résistance mécanique de la Ce-TZP, notamment le frittage SPS ou l'élaboration de composites par mélange de poudres commerciales. Parmi les résultats présentés, le plus marquant est sans doute l’élaboration de composites dans le système 10Ce-TZP/MgAl2O4, caractérisés par une combinaison de propriétés mécaniques inédite (Sigma R = 900 MPa, KIc >15MPa.m1/2), et une stabilité à très long terme en présence d’eau . La mise en forme de ce matériau par des procédés industriels de pressage a été rendue possible grâce à une étape de granulation par atomisation ultrasonique. Enfin, un axe de recherche a été dédié à l’élaboration de poudres composites à base de Ce-TZP en une seule étape, par synthèse chimique. Ces travaux plus prospectifs montrent qu’un mélange très intime de deux phases peut-être obtenu par des méthodes de chimie douce dans une poudre composite. Ces poudres permettent l’élaboration de matériaux nanostructurés, dont les propriétés pourraient dépasser celles des composites conventionnels. / Yttria-doped tetragonal zirconia ceramics (often referred as Y-TZP) are today of major interest in biomedical and particularly dental applications, due to their excellent combination of strength and aesthetic features. Nevertheless, the moderate toughness of 3Y-TZP, and its still possible low temperature degradation (LTD) leaves space for new materials development. The purpose of this study is to assess the potential benefit of using ceria-doped zirconia (Ce-TZP) based ceramics as an tough, strong and stable alternative to Y-TZP. Ce-TZP generally possesses high toughness, but moderate strength when compared to 3Y-TZP, which is related to a larger grain size. In order to improve the strength of Ce-TZP, three microstructural optimizations have been carried out. First, Spark Plasma Sintering (SPS) has been used, showing a good potential for the development of nanostructured materials, which can be dense and mainly tetragonal, but aesthetically incompatible with a dental application. Cerium reduction effects on color and phase repartition have been studied. Adding a second step of conventional sintering in air has led to fully dense submicron 12Ce-TZP with acceptable color, but unsufficient strengthening. In a second step, a conventional composite approach has been used, by mixing commercial powders. The most striking result is certainly the uncommon combination of mechanical properties (Sigma R = 900 MPa, KIc > 15MPa.m1/2) obtained in the system 10Ce-TZP/MgAl2O4, together with a long term stability in presence of water. Pilot scale processing of this material has been set up by mean of ultrasonic spray-drying. Finally, a third research axis has been devoted to the synthesis of composite powders based on Ce-TZP, in one step. This work has shown that a very close mix of two phases can be obtained par soft chemistry methods in a composite powder. Nanostructured materials can be obtained from these powders, which properties could exceed those of conventional composites.

Identiferoai:union.ndltd.org:theses.fr/2011ISAL0134
Date06 December 2011
CreatorsCourtois, Nicolas
ContributorsLyon, INSA, Reveron, Helen, Chevalier, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds