We present a novel approach to the investigation of transport coefficients in condensed matter systems, which is based on a pertinent time-convolutionless (TCL) projection operator technique. In this context we analyze in advance the convergence of the corresponding perturbation expansion and the influence of the occurring inhomogeneity.
The TCL method is used to establish a formalism for a consistent derivation of a Boltzmann equation from the underlying quantum dynamics, which is meant to apply to non-ideal quantum gases. We obtain a linear(ized) collision term that results as a finite non-singular rate matrix and is thus adequate for further considerations, e.g., the calculation of transport coefficients. In the work at hand we apply the provided scheme to numerically compute the diffusion coefficient of an atomic wire and especially analyze its dependence on certain model properties, in particular on the width of the wire.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-201003165677 |
Date | 16 March 2010 |
Creators | Bartsch, Christian |
Contributors | Prof. Dr. Jochen Gemmer, Prof. Dr. Michael Rohlfing |
Source Sets | Universität Osnabrück |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/zip |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds