Spelling suggestions: "subject:"05.60.Gg - kuantum transport"" "subject:"05.60.Gg - auantum transport""
1 |
Transport und Relaxation in QuantenmodellenKadiroglu, Mehmet 08 December 2009 (has links)
Das Transport- und Relaxationsverhalten verschiedener Quantenmodelle wird untersucht. Den ersten Teil der vorliegenden Arbeit bildet die Untersuchung der Transporteigenschaften von speziellen finiten modularen Quantensystemen bzgl. einer Boltzmann-Gleichung (BG). Diese Systeme, in denen unter bestimmten Bedingungen diffusiver Transport beobachtet werden kann, wurden mit verschiedenen Methoden zur Beschreibung von Quantentransport untersucht. Dabei zeigt sich, dass sich das diffusive Transportverhalten in diesen Systemen aus der zugrunde liegenden Schrödinger Dynamik heraus beschreiben lässt. Ob die diffusive Dynamik in diesen Systemen ebenfalls auf der Basis einer BG beschrieben werden kann, wird analytisch und numerisch untersucht. Im zweiten Teil wird die Relaxationsdynamik in quantenmechanischen Vielteilchensystemen untersucht. Speziell wird versucht, die Lebensdauern von angeregten Elektronen (Löchern) in Metallen, welche mit dem Fermi-See der Elektronen wechselwirken, mittels der zeitfaltungsfreien Projektionsoperator-Methode (TCL) zu bestimmen. Letztere liefert einen analytischen Ausdruck für die Dämpfungsrate (inverse Lebensdauer), welche temperaturabhängig ist und im Rahmen von Standard-Streuprozessen interpretiert werden kann. Um dieses analytische Ergebnis zu testen, wird es angewendet, um die Lebensdauern angeregter Elektronen (Löcher) in Aluminium zu bestimmen, für das ein Jellium Modell verwendet wird. Die Ergebnisse, die man über Monte-Carlo-Integration erhält, werden mit experimentellen und theoretischen Daten aus Selbstenergie-Rechnungen verglichen. Des Weiteren werden die Lebensdauern angeregter Elektronen in Kupfer ermittelt, für das ein Tight-Binding-Modell verwendet wird.
|
2 |
Investigation of the emergence of thermodynamic behavior in closed quantum systems and its relation to standard stochastic descriptionsSchmidtke, Daniel 20 August 2018 (has links)
Our everyday experiences teach us that any imbalance like temperature gradients, non-uniform particle-densities etc. will approach some equilibrium state if not subjected to any external force. Phenomenological descriptions of these empirical findings reach back to the 19th century where Fourier and Fick presented descriptions of relaxation for macroscopic systems by stochastic approaches. However, one of the main goals of thermodynamics remained the derivation of these phenomenological description from basic microscopic principles. This task has gained much attraction since the foundation of quantum mechanics about 100 years ago. However, up to now no such conclusive derivation is presented. In this dissertation we will investigate whether closed quantum systems may show equilibration, and if so, to what extend such dynamics are in accordance with standard thermodynamic behavior as described by stochastic approaches. To this end we consider i.a. Markovian dynamics, Fokker-Planck and diffusion equations. Furthermore, we consider fluctuation theorems as given e.g. by the Jarzynski relation beyond strict Gibbsian initial states. After all we find indeed good agreement for selected quantum systems.
|
3 |
General Projective Approach to Transport Coefficients of Condensed Matter Systems and Application to an Atomic WireBartsch, Christian 16 March 2010 (has links)
We present a novel approach to the investigation of transport coefficients in condensed matter systems, which is based on a pertinent time-convolutionless (TCL) projection operator technique. In this context we analyze in advance the convergence of the corresponding perturbation expansion and the influence of the occurring inhomogeneity.
The TCL method is used to establish a formalism for a consistent derivation of a Boltzmann equation from the underlying quantum dynamics, which is meant to apply to non-ideal quantum gases. We obtain a linear(ized) collision term that results as a finite non-singular rate matrix and is thus adequate for further considerations, e.g., the calculation of transport coefficients. In the work at hand we apply the provided scheme to numerically compute the diffusion coefficient of an atomic wire and especially analyze its dependence on certain model properties, in particular on the width of the wire.
|
4 |
Application of Projection Operator Techniques to Transport Investigations in Closed Quantum SystemsSteinigeweg, Robin 28 August 2008 (has links)
The work at hand presents a novel approach to transport in closed quantum systems. To this end a method is introduced which is essentially based on projection operator techniques, in particular on the time-convolutionless (TCL) technique. The projection onto local densities of quantities such as energy, magnetization, particles, etc. yields the reduced dynamics of the respective quantities in terms of a systematic perturbation expansion. Especially, the lowest order contribution of this expansion is used as a strategy for the analysis of transport in "modular" quantum systems. The term modular basically corresponds to (quasi-) one-dimensional structures consisting of identical or at least similar many-level subunits. Modular quantum systems are demonstrated to represent many physical situations and several examples are given. In the context of these quantum systems lowest order TCL is shown as an efficient tool which also allows to investigate the dependence of transport on the considered length scale. In addition an estimation for the validity range of lowest order TCL is derived. As a first application a "design" model is considered for which a complete characterization of all available transport types as well as the transitions to each other is possible. For this model the relationship to quantum chaos and the validity of the Kubo formula is further discussed. As an example for a "real" system the Anderson model is finally analyzed. The results are partially verified by the numerical solution of the full time-dependent Schroedinger equation which is obtained by exact diagonalization or approximative integrators.
|
Page generated in 0.0799 seconds