Return to search

Utvärdering och användning av maskindata för tillståndsbaserat underhåll i en industriell kontext

Industriellt underhåll har upplevt en utveckling från det ursprungliga akuta avhjälpande underhållet till dagens möjligheter till underhåll baserat på data, så kallat tillståndsbaserat underhåll (CBM). För CBM genomförs endast underhåll vid behov och detta bestäms av aktuell data från den studerade utrustningen. Onödigt underhåll minimeras och antalet plötsliga haverier minskar. Utvecklingen mot Internet of Things (IoT) ger upphov till en stor mängd data som potentiellt kan användas vid CBM-underhåll. En utmaning uppstår dock i att identifiera sådan data och hur denna data kan användas. Denna studie har syftat till att undersöka hur sådan data kan identifieras och hur den kan tänkas användas vid CBM-underhåll. Studien har utförts tillsammans med Quant i Karlskrona där Quant genomför alla underhållsrelaterade aktiviteter åt ABB High Voltage Cables, ett industriföretag som tillverkar högspänningskablar. Arbetet har utgått från tre frågeställningar som har syftat till att: Identifiera datavariabler som kan tänkas ha relevans för CBM-underhåll. Tolka de identifierade datavariablerna för att bedöma hur de kan användas i CBM. Bedöma lämpligheten av en potentiell CBM-implementation baserat på identifierad data jämfört med existerande underhållsmetod. Arbetet har avgränsats genom att fokusera på ett enskilt företag och en enskild fabrik. Utöver detta har en avgränsning gjorts där fokus lagts på några få enskilda maskiner och komponenter. Sekretess har även behövt beaktas vid hantering av känslig information. Studien har huvudsakligen utförts kvalitativt, genom att på djupet fokusera på ett fåtal maskiner och komponenter. Arbetet har genomförts i nära samarbete med några av Quants anställda. Processdata har samlats in direkt från maskinerna och analyserats genom att identifiera och studera avvikelser i data. Intervjuer av olika slag, kompletterade med dokument, har varit en viktig metod för att inhämta information från anställda på Quant, både kring hur data kan tolkas men även kring hur olika processer fungerar. Analytic hierarchy process (AHP) genomfördes i fokusgrupp med anställda för att bedöma lämplig underhållsstrategi. Ett potentiellt tillvägagångssätt har identifierats som tillåter användning av processdata för CBM hos en särskild komponenttyp på företaget. Metoden behöver implementeras och testas men potential finns att minska underhållskostnaderna. Intressanta avvikelser i processdata har identifierats hos en annan komponent som bör studeras vidare för att förstå om processdata och avvikelserna kan användas i en CBM-kontext eller inte. Förbättringsområden hos företaget har identifierats i tillämpningen av vibrationsmätning, vilket är en metod med god potential att användas för CBM-underhåll och därmed minska underhållskostnaderna. Oljeanalys tillämpas redan men en intressant fundering är hur företagets oljefiltrering påverkar möjligheterna att implementera ett prediktivt underhåll i framtiden. Detta är ett område som framtida studier behöver titta på och bedöma hur det ska tacklas. AHP har även bekräftats vara en användbar metod för att bedöma lämpligaste underhållspolicyn. / Industrial maintenance has experienced an evolution from the initial corrective maintenance to the possibility of using data based maintenance techniques, so called condition-based maintenance (CBM). Maintenance is only performed when needed under CBM and this is decided based on the data retrieved from the studied equipment. Unnecessary maintenance is minimized and the number of sudden breakdowns decreases. The trend towards Internet of Things (IoT) gives rise to a large amount of data that can potentially be used in CBM maintenance. 'A challenge arises in identifying and using such data. This study has aimed to investigate how such data can be identified and how it might be used in CBM maintenance. This study has been carried out together with Quant in Karlskrona, Sweden, where Quant performs all maintenance related activities for ABB High Voltage Cables, an industrial manufacturing company. The study has been based on three questions that have aimed to: Identify data variables that might be relevant for CBM maintenance. Interpret the identified data variables to assess how they can be used in CBM. Assess the suitability of a potential CBM implementation based on the identified data compared to the existing maintenance method. The study has been delimited by focusing on a single company and a single factory. In addition, a delimitation has been made to focus on a few individual machines and components. A nondisclosure agreement also had to be considered when dealing with sensitive information. This study has mainly been conducted qualitatively, by focusing in-depth on a few machines and components. The work has been done in close collaboration with Quant’s employees. Process data has been collected from the machines and analyzed by identifying and studying data anomalies. Interviews, complemented with documents, has been an important method in obtaining information from Quant employees, both regarding how data can be interpreted but also on how the various processes work. Analytic hierarchy process (AHP) was conducted in a focus group with employees to determine the most appropriate maintenance strategy. One potential approach has been identified that allows the use of process data for CBM on a particular type of component at the company. The method needs to be implemented and tested but the potential exists to reduce maintenance costs. Interesting anomalies in the process data have been identified in another component which should be studied further to understand if the process data and the anomalies can be used in a CBM context or not. Areas for improvement at the company have been identified in the application of vibration measurements, which is a method with good potential to be used in CBM maintenance, thereby reducing maintenance costs. Oil analysis is already used but an interesting question is how the company’s oil filtration affects its ability to implement a predictive maintenance scheme in the future. This is an area that future studies need to look at and assess how it should be tackled. AHP has also been confirmed to be a useful method to determine the most appropriate maintenance policy.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-12829
Date January 2016
CreatorsMilakovic, Stefan
PublisherBlekinge Tekniska Högskola, Institutionen för industriell ekonomi
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0315 seconds