Orientador: Pedro Jose Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-09T00:50:27Z (GMT). No. of bitstreams: 1
Stelmastchuk_SimaoNicolau_D.pdf: 537546 bytes, checksum: f06c81c8cd3b758c84d267af8373abdd (MD5)
Previous issue date: 2007 / Resumo: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula / Abstract: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula / Doutorado / Geometria Estocastica / Doutor em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306326 |
Date | 20 September 2007 |
Creators | Stelmastchuk, Simão Nicolau, 1977- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Catuogno, Pedro Jose, 1959-, Ruffino, Paulo Regis Caron, San Martin, Luiz Antonio Barrera, Zhou, Detang, Fragoso, Marcelo Dutra |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 79f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds