Return to search

The automorphism group of accessible groups and the rank of Coxeter groups / Groupe d'automorphismes des groupes accessibles et le rang des groupes de Coxeter

Cette thèse est consacrée à l'étude du groupe d'automorphismes de groupes agissant sur des arbres d'une part, et du rang des groupes de Coxeter d'autre part.<p><p>Via la théorie de Bass-Serre, un groupe agissant sur un arbre est doté d'une structure algébrique particulière, généralisant produits amalgamés et extensions HNN. Le groupe est en fait déterminé par certaines données combinatoires découlant de cette action, appelées graphes de groupes. <p><p>Un cas particulier de cette situation est celle d'un produit libre. Une présentation du groupe d'automorphisme d'un produit libre d'un nombre fini de groupes librement indécomposables en termes de présentation des facteurs et de leurs groupes d'automorphismes a été donnée par Fouxe-Rabinovich. Il découle de son travail que si les facteurs et leurs groupes d'automorphismes sont de présentation finie, alors le groupe d'automorphisme du produit libre est de présentation finie. Une première partie de cette thèse donne une nouvelle preuve de ce résultat, se basant sur le langage des actions de groupes sur les arbres.<p><p>Un groupe accessible est un groupe de type fini déterminé par un graphe de groupe fini dont les groupes d'arêtes sont finis et les groupes de sommets ont au plus un bout, c'est-à-dire qu'ils ne se décomposent pas en produit amalgamé ni en extension HNN sur un groupe fini. L'étude du groupe d'automorphisme d'un groupe accessible est ramenée à l'étude de groupes d'automorphismes de produits libres, de groupes de twists de Dehn et de groupes d'automorphismes relatifs des groupes de sommets. En particulier, on déduit un critère naturel pour que le groupe d'automorphismes d'un groupe accessible soit de présentation finie, et on donne une caractérisation des groupes accessibles dont le groupe d'automorphisme externe est fini. Appliqués aux groupes hyperboliques de Gromov, ces résultats permettent d'affirmer que le groupe d'automorphismes d'un groupe hyperbolique est de présentation finie, et donnent une caractérisation précise des groupes hyperboliques dont le groupe d'automorphisme externe est fini.<p><p>Enfin, on étudie le rang des groupes de Coxeter, c'est-à-dire le cardinal minimal d'un ensemble générateur pour un groupe de Coxeter donné. Plus précisément, on montre que si les composantes de la matrice de Coxeter déterminant un groupe de Coxeter sont suffisamment grandes, alors l'ensemble générateur standard est de cardinal minimal parmi tous les ensembles générateurs. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/210261
Date30 September 2009
CreatorsCarette, Mathieu
ContributorsMuhlherr, Bernhard, Weidmann, Richard, Bourgeois, Frédéric, Leemans, Dimitri, Caprace, Pierre-Emmanuel, Levitt, Gilbert
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageFrench
Detected LanguageFrench
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format1 v. (vii, 104 p.), No full-text files

Page generated in 0.0025 seconds