• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 2
  • 1
  • Tagged with
  • 28
  • 28
  • 12
  • 10
  • 9
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Quantum Automorphism Group and Undirected Trees

Fulton, Melanie B. 14 August 2006 (has links)
A classification of all undirected trees with automorphism group isomorphic to $(Z_2)^l$ is given in terms of a vertex partition called a refined star partition. Recently the notion of a quantum automorphism group has been defined by T. Banica and J. Bichon. The quantum automorphism group is similar to the classical automorphism group, but has relaxed commutivity. The classification of all undirected trees with automorphism group isomorphic to $(Z_2)^l$ along with a similar classification of all undirected asymmetric trees is used to give some insight into the structure of the quantum automorphism group for such graphs. / Ph. D.
2

Matrix Representations of Automorphism Groups of Free Groups

Andrus, Ivan B. 20 June 2005 (has links) (PDF)
In this thesis, we study the representation theory of the automorphism group Aut (Fn) of a free group by studying the representation theory of three finite subgroups: two symmetric groups, Sn and Sn+1, and a Coxeter group of type Bn, also known as a hyperoctahedral group. The representation theory of these subgroups is well understood in the language of Young Diagrams, and we apply this knowledge to better understand the representation theory of Aut (Fn). We also calculate irreducible representations of Aut (Fn) in low dimensions and for small n.
3

On the Existence of a Second Hamilton Cycle in Hamiltonian Graphs With Symmetry

Wagner, Andrew 05 December 2013 (has links)
In 1975, Sheehan conjectured that every simple 4-regular hamiltonian graph has a second Hamilton cycle. If Sheehan's Conjecture holds, then the result can be extended to all simple d-regular hamiltonian graphs with d at least 3. First, we survey some previous results which verify the existence of a second Hamilton cycle if d is large enough. We will then demonstrate some techniques for finding a second Hamilton cycle that will be used throughout this paper. Finally, we use these techniques and show that for certain 4-regular Hamiltonian graphs whose automorphism group is large enough, a second Hamilton cycle exists.
4

On the Existence of a Second Hamilton Cycle in Hamiltonian Graphs With Symmetry

Wagner, Andrew January 2013 (has links)
In 1975, Sheehan conjectured that every simple 4-regular hamiltonian graph has a second Hamilton cycle. If Sheehan's Conjecture holds, then the result can be extended to all simple d-regular hamiltonian graphs with d at least 3. First, we survey some previous results which verify the existence of a second Hamilton cycle if d is large enough. We will then demonstrate some techniques for finding a second Hamilton cycle that will be used throughout this paper. Finally, we use these techniques and show that for certain 4-regular Hamiltonian graphs whose automorphism group is large enough, a second Hamilton cycle exists.
5

Rational Schur Rings over Abelian Groups

Kerby, Brent L. 08 July 2008 (has links) (PDF)
In 1993, Muzychuk showed that the rational S-rings over a cyclic group Z_n are in one-to-one correspondence with sublattices of the divisor lattice of n, or equivalently, with sublattices of the lattice of subgroups of Z_n. This idea is easily extended to show that for any finite group G, sublattices of the lattice of characteristic subgroups of G give rise to rational S-rings over G in a natural way. Our main result is that any finite group may be represented as the automorphism group of such a rational S-ring over an abelian p-group. In order to show this, we first give a complete description of the automorphism classes and characteristic subgroups of finite abelian groups. We show that for a large class of abelian groups, including all those of odd order, the lattice of characteristic subgroups is distributive. We also prove a converse to the well-known result of Muzychuk that two S-rings over a cyclic group are isomorphic if and only if they coincide; namely, we show that over a group which is not cyclic, there always exist distinct isomorphic S-rings. Finally, we show that the automorphism group of any S-ring over a cyclic group is abelian.
6

The Automorphism Group of the Halved Cube

MacKinnon, Benjamin B 01 January 2016 (has links)
An n-dimensional halved cube is a graph whose vertices are the binary strings of length n, where two vertices are adjacent if and only if they differ in exactly two positions. It can be regarded as the graph whose vertex set is one partite set of the n-dimensional hypercube, with an edge joining vertices at hamming distance two. In this thesis we compute the automorphism groups of the halved cubes by embedding them in R n and realizing the automorphism group as a subgroup of GLn(R). As an application we show that a halved cube is a circulant graph if and only if its dimension of is at most four.
7

The automorphism group of accessible groups and the rank of Coxeter groups / Le groupe d'automorphismes des groupes accessibles et le rang des groupes de Coxeter

Carette, Mathieu 30 September 2009 (has links)
Cette thèse est consacrée à l'étude du groupe d'automorphismes de groupes agissant sur des arbres d'une part, et du rang des groupes de Coxeter d'autre part. Via la théorie de Bass-Serre, un groupe agissant sur un arbre est doté d'une structure algébrique particulière, généralisant produits amalgamés et extensions HNN. Le groupe est en fait déterminé par certaines données combinatoires découlant de cette action, appelées graphes de groupes. Un cas particulier de cette situation est celle d'un produit libre. Une présentation du groupe d'automorphisme d'un produit libre d'un nombre fini de groupes librement indécomposables en termes de présentation des facteurs et de leurs groupes d'automorphismes a été donnée par Fouxe-Rabinovich. Il découle de son travail que si les facteurs et leurs groupes d'automorphismes sont de présentation finie, alors le groupe d'automorphisme du produit libre est de présentation finie. Une première partie de cette thèse donne une nouvelle preuve de ce résultat, se basant sur le langage des actions de groupes sur les arbres. Un groupe accessible est un groupe de type fini déterminé par un graphe de groupe fini dont les groupes d'arêtes sont finis et les groupes de sommets ont au plus un bout, c'est-à-dire qu'ils ne se décomposent pas en produit amalgamé ni en extension HNN sur un groupe fini. L'étude du groupe d'automorphisme d'un groupe accessible est ramenée à l'étude de groupes d'automorphismes de produits libres, de groupes de twists de Dehn et de groupes d'automorphismes relatifs des groupes de sommets. En particulier, on déduit un critère naturel pour que le groupe d'automorphismes d'un groupe accessible soit de présentation finie, et on donne une caractérisation des groupes accessibles dont le groupe d'automorphisme externe est fini. Appliqués aux groupes hyperboliques de Gromov, ces résultats permettent d'affirmer que le groupe d'automorphismes d'un groupe hyperbolique est de présentation finie, et donnent une caractérisation précise des groupes hyperboliques dont le groupe d'automorphisme externe est fini. Enfin, on étudie le rang des groupes de Coxeter, c'est-à-dire le cardinal minimal d'un ensemble générateur pour un groupe de Coxeter donné. Plus précisément, on montre que si les composantes de la matrice de Coxeter déterminant un groupe de Coxeter sont suffisamment grandes, alors l'ensemble générateur standard est de cardinal minimal parmi tous les ensembles générateurs.
8

Automorphism Groups of Quandles

Macquarrie, Jennifer 01 January 2011 (has links)
This thesis arose from a desire to better understand the structures of automorphism groups and inner automorphism groups of quandles. We compute and give the structure of the automorphism groups of all dihedral quandles. In their paper Matrices and Finite Quandles, Ho and Nelson found all quandles (up to isomorphism) of orders 3, 4, and 5 and determined their automorphism groups. Here we find the automorphism groups of all quandles of orders 6 and 7. There are, up to isomoprhism, 73 quandles of order 6 and 289 quandles of order 7.
9

Orbit parametrizations of theta characteristics on hypersurfaces / 超曲面上のシータ・キャラクタリスティックの軌道によるパラメータ付け

Ishitsuka, Yasuhiro 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18766号 / 理博第4024号 / 新制||理||1580(附属図書館) / 31717 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 伊藤 哲史, 教授 上田 哲生, 教授 雪江 明彦 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
10

On the Automorphism Groups of Almost All Circulant Graphs and Digraphs

Bhoumik, Soumya 17 August 2013 (has links)
We attempt to determine the structure of the automorphism group of a generic circulant graph. We first show that almost all circulant graphs have automorphism groups as small as possible. Dobson has conjectured that almost all of the remaining circulant (di)graphs (those whose automorphism groups are not as small as possible) are normal circulant (di)graphs. We show this conjecture is not true in general, but is true if we consider only those circulant (di)graphs whose orders are in a “large” subset of integers. We note that all non-normal circulant (di)graphs can be classified into two natural classes (generalized wreath products, and deleted wreath type), and show that neither of these classes contains almost every non-normal circulant digraph.

Page generated in 0.0597 seconds