• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Decomposition of the Group Algebra of a Hyperoctahedral Group

Tomlin, Drew E 12 1900 (has links)
The descent algebra of a Coxeter group is a subalgebra of the group algebra with interesting representation theoretic properties. For instance, the natural map from the descent algebra of the symmetric group to the character ring is a surjective algebra homomorphism, so the descent algebra implicitly encodes information about the representations of the symmetric group. However, this property does not hold for other Coxeter groups. Moreover, a complete set of primitive idempotents in the descent algebra of the symmetric group leads to a decomposition of the group algebra as a direct sum of induced linear characters of centralizers of conjugacy class representatives. In this dissertation, I consider the hyperoctahedral group. When the descent algebra of a hyperoctahedral group is replaced with a generalization called the Mantaci-Reutenauer algebra, the natural map to the character ring is surjective. In 2008, Bonnafé asked whether a complete set of idempotents in the Mantaci-Reutenauer algebra could lead to a decomposition of the group algebra of the hyperoctahedral group as a direct sum of induced linear characters of centralizers. In this dissertation, I will answer this question positively and go through the construction of the idempotents, conjugacy class representatives, and linear characters required to do so.
2

Matrix Representations of Automorphism Groups of Free Groups

Andrus, Ivan B. 20 June 2005 (has links) (PDF)
In this thesis, we study the representation theory of the automorphism group Aut (Fn) of a free group by studying the representation theory of three finite subgroups: two symmetric groups, Sn and Sn+1, and a Coxeter group of type Bn, also known as a hyperoctahedral group. The representation theory of these subgroups is well understood in the language of Young Diagrams, and we apply this knowledge to better understand the representation theory of Aut (Fn). We also calculate irreducible representations of Aut (Fn) in low dimensions and for small n.
3

Liens combinatoires entre fonctions quasisymétriques et tableaux dans les groupes de Coxeter. / Combinatorial links between quasisymmetric functions and tableaux for Coxeter groups.

Mayorova, Alina 12 June 2019 (has links)
L'algèbre des fonctions symétriques est un outil majeur de la combinatoire algébrique qui joue un rôle central dans la théorie des représentations du groupe symétrique. Cette thèse traite des fonctions quasisymétriques, une puissante généralisation introduite par Gessel en 1984, avec des applications significatives dans l'énumération d'objets combinatoires majeurs tels que les permutations, les tableaux de Young et les P-partitions. Plus précisément, nous trouvons un nouveau lien entre l'extension des fonctions quasisymétriques de Chow à des groupes de Coxeter de type B et des tableaux de dominos. Ceci nous permet d'apporter de nouveaux résultats dans divers domaines, notamment les constantes de structure de l'algèbre de descente de Solomon de type B, l'extension de la théorie de la Schur-positivité aux permutations signées et l'étude d'une formule de Cauchy de type B $q$-déformée avec des implications importantes statistiques pour les tableaux dominos.Parmi les bases remarquables de l'algèbre des fonctions symétriques, les fonctions de Schur ont fait l'objet d'une attention particulière car elles sont étroitement liées aux caractères irréductibles du groupe linéaire général et aux diagrammes de Young. La fonction symétrique de Schur est la fonction génératrice des tableaux de Young semistandards. Ce résultat s'étend aux formes gauches et permet d'écrire n'importe quelle fonction de Schur (gauche) comme la somme des fonctions quasisymétriques fondamentales de Gessel, indexées par l'ensemble de descente de tous les tableaux de Young standard d'une forme donnée. En outre, la célèbre formule de Cauchy pour les fonctions de Schur donne une preuve algébrique de la correspondance de Robinson-Schensted-Knuth. Enfin, les constantes de structure pour la multiplication et la comultiplication des polynômes de Schur sont respectivement les coefficients de Littlewood-Richardson et de Kronecker, deux familles importantes de coefficients ayant diverses applications combinatoires et algébriques. En utilisant des résultats connus sur les fonctions quasisymétriques fondamentales de Gessel, nous montrons que ces propriétés impliquent directement et de façon purement algébrique divers résultats pour les constantes de structure de l'algèbre de descente de Salomon d'un groupe de Coxeter fini de type A et la propriété de préservation de descente de la correspondance de Robinson-Schensted, un outil essentiel pour identifier les ensembles Schur-positifs, c'est-à-dire les ensembles de permutations dont la fonction quasisymétrique associée est symétrique et qui peut s'écrire sous la forme d'une somme non négative de fonctions symétriques de Schur.Pour étendre ces résultats aux groupes de Coxeter de type B, nous avons introduit une famille de fonctions génératrices modifiées pour les tableaux de dominos et la relions aux fonctions quasisymétriques fondamentales de type B de Chow. Grâce à cette relation, nous obtenons de nouvelles formules reliant les constantes de structure de l'algèbre de descente de Salomon de type B aux coefficients de Kronecker et de Littlewood-Richardson de type B.Cela nous permet en outre d'introduire une nouvelle extension de type B de la Schur-positivité basée sur une définition de la descente pour les permutations signées, conforme à la définition abstraite de Solomon pour tous les groupes de Coxeter. Nous concevons des bijections préservant la descente entre des permutations d'arc signées et des ensembles de tableaux de dominos afin de montrer qu'ils sont bien type B Schur-positifs.Enfin, nous introduisons une $ q $-déformation des fonctions génératrices modifiées pour les tableaux de dominos afin d'étendre une identité de Cauchy de type B proposée par Lam et de la lier aux fonctions quasisymétriques de Chow. Nous appliquons ce résultat à un nouveau cadre de positivité de type B $ q $ -Schur et à la démonstration de nouveaux résultats d'équidistribution pour certains ensembles de tableaux de dominos. / The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central role in the representation theory of the symmetric group. This thesis deals with quasisymmetric functions, a powerful generalisation introduced by Gessel in 1984, with significant applications in the enumeration of major combinatorial objects as permutations, Young tableaux and P-partitions. More specifically we find a new connection between Chow's extension of quasisymmetric functions to Coxeter groups of type B and domino tableaux. It allows us to contribute new results to various fields including the structure constants of type B Solomon's descent algebra, the extension of the theory of Schur-positivity to signed permutations and the study a $q$-deformed type B Cauchy formula with important implications regarding statistics for domino tableaux.Among the remarkable bases of the algebra of symmetric functions, Schur functions received a particular attention as they are strongly related to the irreducible characters of the general linear group and Young diagrams. The Schur symmetric function is the generating function for semistandard Young tableaux. This result extends to skew shapes and allows to write any (skew-) Schur function as the sum of Gessel's fundamental quasisymmetric functions indexed by the descent set of all standard Young tableaux of a given shape. Furthermore the celebrated Cauchy formula for Schur functions gives an algebraic proof of the Robinson-Schensted-Knuth correspondence. Finally, the structure constants for the outer product and inner product of Schur polynomials are respectively the Littlewood-Richardson and Kronecker coefficients, two important families of coefficients with various combinatorial and algebraic applications. Using known results about Gessel's fundamental quasisymmetric functions we show that these properties imply directly and in a pure algebraic fashion, various results for the structure constants of the Solomon descent algebra of a finite Coxeter group of type A and the descent preserving property of the Robinson-Schensted correspondence, an essential tool to identify Schur-positive sets, i.e. sets of permutations whose associated quasisymmetric function is symmetric and can be written as a non-negative sum of Schur symmetric functions.To extend these results to Coxeter groups of type B we introduced a family of modified generating functions for domino tableaux and relate it to Chow's type B fundamental quasisymmetric functions. Thanks to this relation we derive new formulas relating the structure constants of the type B Solomon's descent algebra with type B Kronecker and Littlewood-Richardson coefficients.It further allows us to introduce a new type B extension of Schur-positivity based on a definition of descent for signed permutations that is conform to the abstract definition of Solomon for any Coxeter groups. We design descent preserving bijections between signed arc permutations and sets of domino tableaux to show that they are indeed type B Schur-positive.Finally, we introduce a $q$-deformation of the modified generating functions for domino tableaux to extend a type B Cauchy identity by Lam and link it with Chow's quasisymmetric functions. We apply this result to a new framework of type B $q$-Schur positivity and to prove new equidistribution results for some sets of domino tableaux.

Page generated in 0.4484 seconds