• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Matrix representation for partitions and Mock Theta functions

Bagatini, Alessandro January 2016 (has links)
Neste trabalho, com base em representações por matrizes de duas linhas para alguns tipos de partição (algumas já conhecidas e outras novas), identificamos propriedades sugeridas por classificá-las de acordo com a soma dos elementos de sua segunda linha. Esta soma sempre fornece alguma propriedade da partição relacionada. Se considerarmos versões sem sinal de algumas funções Mock Theta, seu termo geral pode ser interpretado como função geradora para algum tipo de partição com restrições. Para retornar aos coeficientes originais, é possível definir um peso para cada matriz e depois somá-las para contá-los. Uma representação análoga para essas partições nos permite observar propriedades sobre elas, novamente por meio de uma classificação referente à soma dos seu elementos da segunda linha. Esta seriação é feita por meio de tabelas criadas pelo software matemático Maple, as quais nos sugerem padrões e identidades relacionadas com outros tipos de partições conhecidas e, muitas vezes, encontrando uma fórmula fechada para contá-las. Tendo as conjecturas obtidas, elas são provadas por meio de bijeções entre conjuntos ou por contagem. / In this work, based on representations by matrices of two lines for some kind of partition (some already known and other new ones), we identify properties suggested by classifying them according to the sum of its second line. This sum always provides some properties of the related partition. If we consider unsigned versions of some Mock Theta Functions, its general term can be interpreted as generating function for some kind of partition with restrictions. To come back to the original coefficients, you can set a weight for each array and so add them to evaluate the coefficients. An analogous representation for partitions allows us to observe properties, again by classificating them according to the sum of its elements on the second row. This classification is made by means of tables created by mathematical software Maple, which suggest patterns, identities related to other known types of partitions and often, finding a closed formula to count them. Having established conjectured identities, all are proved by bijections between sets or counting methods.
2

Matrix representation for partitions and Mock Theta functions

Bagatini, Alessandro January 2016 (has links)
Neste trabalho, com base em representações por matrizes de duas linhas para alguns tipos de partição (algumas já conhecidas e outras novas), identificamos propriedades sugeridas por classificá-las de acordo com a soma dos elementos de sua segunda linha. Esta soma sempre fornece alguma propriedade da partição relacionada. Se considerarmos versões sem sinal de algumas funções Mock Theta, seu termo geral pode ser interpretado como função geradora para algum tipo de partição com restrições. Para retornar aos coeficientes originais, é possível definir um peso para cada matriz e depois somá-las para contá-los. Uma representação análoga para essas partições nos permite observar propriedades sobre elas, novamente por meio de uma classificação referente à soma dos seu elementos da segunda linha. Esta seriação é feita por meio de tabelas criadas pelo software matemático Maple, as quais nos sugerem padrões e identidades relacionadas com outros tipos de partições conhecidas e, muitas vezes, encontrando uma fórmula fechada para contá-las. Tendo as conjecturas obtidas, elas são provadas por meio de bijeções entre conjuntos ou por contagem. / In this work, based on representations by matrices of two lines for some kind of partition (some already known and other new ones), we identify properties suggested by classifying them according to the sum of its second line. This sum always provides some properties of the related partition. If we consider unsigned versions of some Mock Theta Functions, its general term can be interpreted as generating function for some kind of partition with restrictions. To come back to the original coefficients, you can set a weight for each array and so add them to evaluate the coefficients. An analogous representation for partitions allows us to observe properties, again by classificating them according to the sum of its elements on the second row. This classification is made by means of tables created by mathematical software Maple, which suggest patterns, identities related to other known types of partitions and often, finding a closed formula to count them. Having established conjectured identities, all are proved by bijections between sets or counting methods.
3

Matrix representation for partitions and Mock Theta functions

Bagatini, Alessandro January 2016 (has links)
Neste trabalho, com base em representações por matrizes de duas linhas para alguns tipos de partição (algumas já conhecidas e outras novas), identificamos propriedades sugeridas por classificá-las de acordo com a soma dos elementos de sua segunda linha. Esta soma sempre fornece alguma propriedade da partição relacionada. Se considerarmos versões sem sinal de algumas funções Mock Theta, seu termo geral pode ser interpretado como função geradora para algum tipo de partição com restrições. Para retornar aos coeficientes originais, é possível definir um peso para cada matriz e depois somá-las para contá-los. Uma representação análoga para essas partições nos permite observar propriedades sobre elas, novamente por meio de uma classificação referente à soma dos seu elementos da segunda linha. Esta seriação é feita por meio de tabelas criadas pelo software matemático Maple, as quais nos sugerem padrões e identidades relacionadas com outros tipos de partições conhecidas e, muitas vezes, encontrando uma fórmula fechada para contá-las. Tendo as conjecturas obtidas, elas são provadas por meio de bijeções entre conjuntos ou por contagem. / In this work, based on representations by matrices of two lines for some kind of partition (some already known and other new ones), we identify properties suggested by classifying them according to the sum of its second line. This sum always provides some properties of the related partition. If we consider unsigned versions of some Mock Theta Functions, its general term can be interpreted as generating function for some kind of partition with restrictions. To come back to the original coefficients, you can set a weight for each array and so add them to evaluate the coefficients. An analogous representation for partitions allows us to observe properties, again by classificating them according to the sum of its elements on the second row. This classification is made by means of tables created by mathematical software Maple, which suggest patterns, identities related to other known types of partitions and often, finding a closed formula to count them. Having established conjectured identities, all are proved by bijections between sets or counting methods.
4

The Γ<sub>0</sub> Graph of a <i>p</i>-Regular Partition

Lyons, Corey Francis 21 May 2010 (has links)
No description available.
5

Matrix Representations of Automorphism Groups of Free Groups

Andrus, Ivan B. 20 June 2005 (has links) (PDF)
In this thesis, we study the representation theory of the automorphism group Aut (Fn) of a free group by studying the representation theory of three finite subgroups: two symmetric groups, Sn and Sn+1, and a Coxeter group of type Bn, also known as a hyperoctahedral group. The representation theory of these subgroups is well understood in the language of Young Diagrams, and we apply this knowledge to better understand the representation theory of Aut (Fn). We also calculate irreducible representations of Aut (Fn) in low dimensions and for small n.
6

A Study on Poset Probability / En studie om Pomängdsprobabilitet

Jaldevik, Albin January 2022 (has links)
Let <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BP%7D%20=%20(%5Cmathbb%7BP%7D,%20%5Cpreceq)" data-classname="equation_inline" data-title="" /> be a finite poset (partially ordered set) with cardinality <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?n" data-classname="equation_inline" data-title="" />. A linear extension of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BP%7D" data-classname="equation_inline" data-title="" /> is an order-preserving bijection <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csigma" data-classname="equation_inline" data-title="" />: <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BP%7D%20%5Crightarrow%20%5Bn%5D" data-classname="equation_inline" data-title="" />, that is, if <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?x%20%5Cpreceq%20y" data-classname="equation_inline" data-title="" /> in <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BP%7D" data-classname="equation_inline" data-title="" /> then <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csigma(x)%20%5Cle%20%5Csigma(y)" data-classname="equation_inline" data-title="" />. We define the poset probability <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?P(%5Calpha%20%5Cpreceq%20%5Cbeta)" data-classname="equation_inline" data-title="" /> as the proportion of linear extensions where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Csigma(%5Calpha)%20%5Cle%20%5Csigma(%5Cbeta)" data-classname="equation_inline" data-title="" />. We are primarily interested in <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?P(%5Calpha%20%5Cpreceq%20%5Cbeta)" data-classname="equation_inline" data-title="" /> for incomparable elements <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Calpha%20%5Cparallel%20%5Cbeta" data-classname="equation" data-title="" />. The probability has significance in areas such as information theory. Let <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?e(%5Cmathbb%7BP%7D)" data-classname="equation_inline" data-title="" /> denote the total number of linear extensions of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BP%7D" data-classname="equation_inline" data-title="" />. We prove that the poset probability can be evaluated as <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?P(%5Calpha%20%5Cpreceq%20%5Cbeta)%20=%20%5Cfrac%7B%20%5Csum_%7BT%20%5Cin%20B(%5Calpha,%5Cbeta)%7D%20e(T)%20e(%5Cmathbb%7BP%7D%20%5Csetminus%20(T%20%5Ccup%20%5C%7B%5Calpha%5C%7D))%7D%7Be(%5Cmathbb%7BP%7D)%7D" data-classname="equation" data-title="" /> where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?B(%5Calpha,%5Cbeta)" data-classname="equation_inline" data-title="" /> is the set of order ideals of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BP%7D" data-classname="equation_inline" data-title="" /> without <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Calpha" data-classname="equation" data-title="" /> or <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cbeta" data-classname="equation" data-title="" />, where we can add <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Calpha" data-classname="equation_inline" data-title="" /> to get a new order ideal of <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BP%7D" data-classname="equation_inline" data-title="" />. The practicality of the preceding formula is explored and we show that <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?T%20%5Cin%20B(%5Calpha,%5Cbeta)%20%5CLeftrightarrow%20%5Cleft%5C%7B%20x%20%7C%20x%20%5Cprec%20%5Calpha%20%5Cright%5C%7D%20%5Csubseteq%20T%20%5Ctext%7B%20and%20%7D%20T%20%5Ctext%7B%20order%20ideal%20of%20%7D%0A%5Cleft%5C%7B%20x%20%7C%20%5Calpha%20%5Cnot%20%5Cpreceq%20x,%5C%20%5Cbeta%20%5Cnot%20%5Cpreceq%20x%7D" data-classname="equation" /> The formula is particularly useful for certain classes of posets such as partition posets which are examined in further detail. We apply the formula to prove that, for all partition posets of shape <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Bn,n%5D" data-classname="equation_inline" data-title="" />, the probability obeys <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?P((2,a)%20%5Cpreceq%20(1,a+1))%20=%20%5Cfrac%7B%20C_a%20C_%7Bn-a%7D%7D%20%7BC_n%7D" data-classname="equation" data-title="" /> where <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?C_n" data-classname="equation_inline" data-title="" /> is the nth Catalan number and <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?a%20%3C%20n" data-classname="equation_inline" data-title="" />. We also explore how Monte Carlo methods can be used to estimate <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?P(%5Calpha%20%5Cpreceq%20%5Cbeta)" data-classname="equation_inline" data-title="" />.
7

A LOWER BOUND ON THE DISTANCE BETWEEN TWO PARTITIONS IN A ROUQUIER BLOCK

Bellissimo, Michael Robert 08 June 2018 (has links)
No description available.
8

On the Diameter of the Brauer Graph of a Rouquier Block of the Symmetric Group

Trinh, Megan 08 June 2018 (has links)
No description available.

Page generated in 0.0643 seconds