Das globale Klimasystem ist ein ausgesprochen komplexes und hochgradig nichtlineares System mit einer Vielzahl von Einflüssen und Interaktionen zwischen Variablen und Parametern. Komplementär zu der Beschreibung des Systems mit globalen Klimamodellen, kann Klima anhand der Interaktionsstruktur des Gesamtsystems durch Netzwerke beschrieben werden. Statt Details so genau wie möglich zu modellieren, werden hier Zeitreihendaten verwendet um zugrundeliegende Strukturen zu finden. Die Herausforderung liegt dann in der Interpretation dieser Strukturen. Um mich der Frage nach der Interpretation von Netzwerkmaßen zu nähern, suche ich nach einem allgemeinen Zusammenhang zwischen Eigenschaften der Netzwerktopologie und Eigenschaften des zugrundeliegenden physikalischen Systems. Dafür werden im Wesentlichen zwei Methoden entwickelt, die auf der Analyse von Temperaturentwicklungen gemäß der Advektions-Diffusions-Gleichung (ADE) basieren. Für die erste Methode wird die ADE mit offenen Randbedingungen und δ-peak Anfangsbedingungen gelöst. Die resultierenden lokalen Temperaturprofile werden verwendet um eine Korrelationsfunktion und damit ein Netzwerk zu definieren. Diese Netzwerke werden analysiert und mit Klimanetzen aus Daten verglichen. Die zweite Methode basiert auf der Diskretisierung der stochastischen ADE. Die resultierende lineare, stochastische Rekursionsgleichung wird verwendet um eine Korrelationsmatrix zu definieren, die nur von der Übergangsmatrix und der Varianz des stochastischen Störungsterms abhängt. Ich konstruiere gewichtete und ungewichtete Netzwerke für vier verschiedene Fälle und schlage Netzwerkmaße vor, die zwischen diesen Systemen zu unterscheiden helfen, wenn nur das Netzwerk und die Knotenpositionen gegeben sind. Die präsentierten Rekonstruktionsmethoden generieren Netzwerke, die konzeptionell und strukturell Klimanetzwerken ähneln und können somit als "proof of concept" der Methode der Klimanetzwerke, sowie als Interpretationshilfe betrachtet werden. / The earth’s climate is an extraordinarily complex, highly non-linear system with a multitude of influences and interactions between a very large number of variables and parameters. Complementary to the description of the system using global climate models, in recent years, a description based on the system’s interaction structure has been developed. Rather than modelling the system in as much detail as possible, here time series data is used to identify underlying large scale structures. The challenge then lies in the interpretation of these structures. In this thesis I approach the question of the interpretation of network measures from a general perspective, in order to derive a correspondence between properties of the network topology and properties of the underlying physical system. To this end I develop two methods of network construction from a velocity field, using the advection-diffusion-equation (ADE) for temperature-dissipation in the system. For the first method, the ADE is solved for δ-peak-shaped initial and open boundary conditions. The resulting local temperature profiles are used to define a correlation function and thereby a network. Those networks are analysed and compared to climate networks from data. Despite the simplicity of the model, it captures some of the most salient features of climate networks. The second network construction method relies on a discretisation of the ADE with a stochastic term. I construct weighted and unweighted networks for four different cases and suggest network measures, that can be used to distinguish between the different systems, based on the topology of the network and the node locations. The reconstruction methods presented in this thesis successfully model many features, found in climate networks from well-understood physical mechanisms. This can be regarded as a justification of the use of climate networks, as well as a tool for their interpretation.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17716 |
Date | 17 November 2014 |
Creators | Molkenthin, Nora |
Contributors | Kurths, Jürgen, Hernández-García, Emilio, Yanchuk, Serhiy |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung, http://creativecommons.org/licenses/by-nc/3.0/de/ |
Page generated in 0.009 seconds