Return to search

Computational homology applied to discrete objects

La théorie de l'homologie formalise la notion de trou dans un espace. Pour un sous-ensemble de l'espace Euclidien, on définit une séquence de groupes d'homologie, dont leurs rangs sont interprétés comme le nombre de trous de chaque dimension. Ces groupes sont calculables quand l'espace est décrit d'une façon combinatoire, comme c'est le cas pour les complexes simpliciaux ou cubiques. À partir d'un objet discret (un ensemble de pixels, voxels ou leur analogue en dimension supérieure) nous pouvons construire un complexe cubique et donc calculer ses groupes d'homologie.Cette thèse étudie trois approches relatives au calcul de l'homologie sur des objets discrets. En premier lieu, nous introduisons le champ de vecteurs discret homologique, une structure combinatoire généralisant les champs de vecteurs gradients discrets, qui permet de calculer les groupes d'homologie. Cette notion permet de voir la relation entre plusieurs méthodes existantes pour le calcul de l'homologie et révèle également des notions subtiles associés. Nous présentons ensuite un algorithme linéaire pour calculer les nombres de Betti dans un complexe cubique 3D, ce qui peut être utilisé pour les volumes binaires. Enfin, nous présentons deux mesures (l'épaisseur et l'ampleur) associés aux trous d'un objet discret, ce qui permet d'obtenir une signature topologique et géométrique plus intéressante que les simples nombres de Betti. Cette approche fournit aussi quelques heuristiques permettant de localiser les trous, d'obtenir des générateurs d'homologie ou de cohomologie minimaux, d'ouvrir et de fermer les trous. / Homology theory formalizes the concept of hole in a space. For a given subspace of the Euclidean space, we define a sequence of homology groups, whose ranks are considered as the number of holes of each dimension. Hence, b0, the rank of the 0-dimensional homology group, is the number of connected components, b1 is the number of tunnels or handles and b2 is the number of cavities. These groups are computable when the space is described in a combinatorial way, as simplicial or cubical complexes are. Given a discrete object (a set of pixels, voxels or their analog in higher dimension) we can build a cubical complex and thus compute its homology groups.This thesis studies three approaches regarding the homology computation of discrete objects. First, we introduce the homological discrete vector field, a combinatorial structure which generalizes the discrete gradient vector field and allows to compute the homology groups. This notion allows to see the relation between different existing methods for computing homology. Next, we present a linear algorithm for computing the Betti numbers of a 3D cubical complex, which can be used for binary volumes. Finally, we introduce two measures (the thickness and the breadth) associated to the holes in a discrete object, which provide a topological and geometric signature more interesting than only the Betti numbers. This approach provides also some heuristics for localizing holes, obtaining minimal homology or cohomology generators, opening and closing holes.

Identiferoai:union.ndltd.org:theses.fr/2016AIXM4073
Date24 November 2016
CreatorsGonzalez Lorenzo, Aldo
ContributorsAix-Marseille, Universidad de Sevilla (Espagne), Mari, Jean-Luc, Bac-Bruasse, Alexandra, Real Jurado, Pedro
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds