La première partie de cette thèse (articles I et II) est consacrée à l'étude du comportement asymptotique des solutions d'un système dynamique du second ordre avec dissipation évanescente. Le système dynamique est étudié dans sa version continue et dans sa version discrète via un algorithme.La deuxième partie de cette thèse (articles III à VI) est consacrée à l'étude de plusieurs algorithmes de type proximal. Nous montrons que ces algorithmes convergent vers des solutions de certains problèmes de minimisation. Dans chaque cas, une application est donnée dans le cadre de la décomposition de domaine pour les EDP. / The first part of this thesis is devoted to the study of the asymptotic behavior of solutions of a second order dynamic system with vanishing dissipation. The dynamic system is studied in its continuous version and in its discrete version via an algorithm.The second part is about the study of several proximal-type algorithms. We show that these algorithms converge to solutions of some minimization problems. In each case, an application is given in the area of domain decomposition for PDE's.
Identifer | oai:union.ndltd.org:theses.fr/2011MON20066 |
Date | 27 September 2011 |
Creators | Frankel, Pierre |
Contributors | Montpellier 2, Attouch, Hedy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0015 seconds