Return to search

Procédés d'épitaxie spécifiques au CMOS 14 et 10 nm : Morphologie et structure / Si-based epitaxy processes for 14 and 10 nm CMOS technologies : Morphology and structure

Dans les technologies avancées, l’épitaxie des matériaux à base de silicium devient de plus en plus critique et les effets morphologiques importants. Les traitements thermiques ainsi que le dopage peuvent altérer la morphologie des épitaxies dégradant de façon considérable les performances des dispositifs. Les travaux de thèse ont pour objectifs de comprendre et résoudre ces problématiques, ils concernent donc l’étude de la morphologie et des forts dopages des épitaxies dans les motifs de petites tailles des technologies CMOS 14 et 10 nm. Nous avons étudié l’influence des conditions de recuit sous H2 sur la morphologie des épitaxies. Ceci a conduit à la détermination de la cinétique d’arrondissement thermique dans les petits motifs (100 nm et moins). D’après une analyse de la cinétique, deux énergies ont été identifiées : 2,9 eV et 7,7 eV. L’énergie de 2,9 eV montre qu’aux hautes températures, la diffusion de surface est le principal mécanisme de l’arrondissement thermique. Aux faibles températures, l’augmentation de la couverture d’hydrogène limite encore plus cette diffusion, augmentant fortement l’énergie obtenue. Nous avons observé que la pression du gaz porteur et la nature de celui-ci ont un impact important sur la diffusion de surface et modulent donc la cinétique d’arrondissement thermique. La caractérisation par microscopie à force atomique de croissances sélectives de couches SiGe dopées bore, montre que le bore modifie grandement la morphologie de croissance, ainsi que l’arrondissement thermique. Pour un même recuit, un motif dopé s’arrondit beaucoup plus rapidement qu’un motif non dopé. Les épitaxies développées au cours de ces travaux ont été intégrées avec succès dans les sources/drains du CMOS 14 nm. Selon le besoin, les épitaxies peuvent soit présenter de larges facettes bien définies soit aucune facette, et cela grâce à un procédé adéquat que ce travail a permis de proposer et développer / In advanced technologies, the Si-based materials epitaxy becomes more and more challenging and the morphological effects very important. The thermal treatments as well as the doping may degrade the epitaxies’ morphology resulting in considerably damaging the devices’ performances. The works presented in this thesis, aim at understanding and solving these problematics. Thus, they are focused on the study of the epitaxies’ morphology and high doping in the small patterns of the 10 and 14 nm CMOS technologies. The influence of the H2 annealing conditions on the morphology was studied. This led to determine the thermal rounding kinetics in small patterns. According to a kinetics analysis, two energies were identified: 2.9 eV and 7.7 eV. The 2.9 eV energy shows that at high temperatures, the surface diffusion is the thermal rounding main mechanism. At low temperatures, the hydrogen coverage’s increase limits even more this diffusion, greatly increasing the energy obtained. It was observed that the carrier gas pressure and its nature have a strong impact on the surface diffusion and thus modify the thermal rounding kinetics. The characterization by atomic force microscopy, of boron doped layer selectively grown, shows that the boron greatly modifies the growth’s morphology, as well as the thermal rounding. Considering a same annealing, the rounding phenomenon occurs faster in a doped pattern than in an un-doped pattern. The epitaxies developed during this work were successfully integrated to the 14 nm node sources and drains. Depending on the needs, the epitaxies can either present large and well defined facets or no facets, all of this thanks to an adequate process which was proposed and developed through this work.

Identiferoai:union.ndltd.org:theses.fr/2017LYSEI032
Date12 May 2017
CreatorsParedes-Saez, Victorien
ContributorsLyon, Brémond, Georges
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0055 seconds