Esta dissertação tem como objetivo discutir sob quais condições uma G- estrutura é integrável. Primeiro apresentam-se fibrados principais, vetoriais e outras estruturas a elas associados como torção, espaços verticais, espaços horizontais e conexões. Depois apresentam-se a definição de G-estrutura, de integrabilidade de G-estruturas, com exemplos e as respectivas versões de integrabilidade e equivalência de G-estruturas. Finalmente, são descritas condições mais gerais que garantem a integrabilidade de G-estruturas. / This dissertation aims to discuss what are the conditions for the inte- grability of a G-structure. We begin presenting principal bundles, vectoer bundles, associated bundles and other structures related to them like torsion, vertical spaces, horizontal spaces and connections. After this, we present the definition of G-structure, integrability os G-structures with examples ans respectives versions of integrabilities and the equivalence of G-estructures. Finally, we describe more general conditions that ensure the integrability of G-structures.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-05072018-111337 |
Date | 28 May 2018 |
Creators | Gustavo Ignácio Duarte |
Contributors | Ivan Struchiner, Lino Anderson da Silva Grama, Maria Amelia Salazar Pinzón |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds