In eukaryotes, sequences that code for the amino acid structure of proteins represent a small fraction of the total sequence space in the genome. These are referred to as coding sequences, whereas the remaining majority of the genome is designated as noncoding. Studies of translation, the process in which a ribosome decodes a coding sequence to synthesize proteins, have primarily focused on coding sequences, mainly due to the belief that translation outside of canonical coding sequences occurs rarely and with little impact on a cell. However, recently developed techniques such as ribosome profiling have revealed pervasive translation in a diverse set of noncoding sequences, including long noncoding RNAs (lncRNAs), introns, and both the 5’ and 3’ UTRs of mRNAs. Although proteins with amino acid sequences derived partially or entirely from noncoding regions may be functional, they will often be nonfunctional or toxic to the cell and therefore need to be removed. Translation outside of canonical coding regions may further expose the noncoding genome to selective pressure at the protein level, leading to the generation of novel functional proteins over evolutionary timescales.
Despite the potentially significant impact of these processes on the cell, the cellular mechanisms that function to detect and triage translation in diverse noncoding regions, as well as how peptides that escape triage may evolve into novel functional proteins, remain poorly understood.This thesis will describe novel findings that offer new insight into the process of noncoding translation mitigation revealed by a combination of high-throughput systems-based approaches and validated by biochemical and genetic approaches.
Chapter 1 will discuss general concepts in the translation of noncoding sequences and the relevant cellular systems and impacts on human health. Chapter 2 will discuss the results of a high-throughput reporter assay investigating translation in thousands of noncoding sequences from diverse sources. The results discussed in this chapter revealed two factors involved in the mitigation of proteins derived from noncoding sequences: C-terminal hydrophobicity and proteasomal degradation. Chapter 3 will build on Chapter 2 and discuss the results of a genome-wide CRISPR/Cas9 knockout screen that identified the BAG6/TRC35/RNF126 membrane protein chaperone complex as a key cellular pathway in the detection and degradation of proteins with translated noncoding sequences. Having identified the BAG6 complex as targeting a specific reporter of translation of the 3’ UTR in the AMD1 gene, a series of knockout cell lines validated these results and demonstrated the participation of two additional genes, SGTA and UBL4A.
Through coimmunoprecipitation western blots and rescue assays with flow cytometry as a readout, we confirmed physical interaction between BAG6 and the 3’ UTR of AMD1, and a similar experiment confirmed interaction between BAG6 and a readthrough mutant of the SMAD4 tumor suppressor gene. Finally, by combining our high-throughput reporter library with our BAG6 knockout cell line, we demonstrated that BAG6 targets hydrophobic C-terminal tails in many noncoding sequences of diverse origin. Finally, Chapter 4 will discuss the evolutionary perspective of noncoding translation through analyses of the sequence content of human and mouse genomes. The findings of this chapter demonstrate a significant trend for increased uracil content in noncoding regions of the genome, which frequently results in the translation of hydrophobic amino acids. We also find that many functional translated noncoding peptides localize to membranes, providing a theoretical link between the shuttling of translated noncoding sequences to a protein complex involved in membrane protein quality control and the emergence of newly evolving proteins from the noncoding genome.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/mzav-bs30 |
Date | January 2022 |
Creators | Kesner, Jordan |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0024 seconds