Equações diferenciais funcionais em medida podem ser usadas como ferramentas para o estudo de modelos físicos mais próximos da realidade, por exemplo, modelos com fenômeno de \"jump\" e constituem um ramo relativamente novo de equações diferenciais. Embora esse campo tenha se desenvolvido nos últimos anos, a teoria sobre equações diferenciais funcionais em medida é escassa, com algumas classes de equações ainda não pesquisadas. Neste trabalho, vamos explorar as equações diferenciais funcionais neutras em medida com retardo infinito. Usando técnicas conhecidas na literatura, obtemos propriedades qualitativas para sua solução, como existência, unicidade e dependência contínua com relação as condições iniciais. Além disso, estudamos a controlabilidade de um sistema descrito por este tipo de equação. / Measure differential equations is a branch of differential equations area recently discovered that can be used as a tool to study physical models closer to the reality, for example, models with the phenomenon of jump. Although this field has been developed in the recent years, the theory of measure functional differential equations is still scarce, and some classes of these equations have not been described yet. Here, we will explore the neutral measure functional differential equations with infinite delay. Using techniques known in the literature, we obtain qualitative properties of their solutions, such as existence, uniqueness and continuous dependence. In addition, we study controllability for systems described by this type of equation.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10062019-081313 |
Date | 01 February 2019 |
Creators | Andrade, Fernando Gomes de |
Contributors | Frasson, Miguel Vinicius Santini |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0026 seconds