Les progrès réalisés durant ces dernières années dans le domaine de la microélectronique et notamment vis-à-vis de l’augmentation exponentielle de la densité d’intégration des composants et des systèmes a participé activement à l’apparition et au développement de systèmes portables communicants de plus en plus performants et polyvalents. La R&D dans les technologies de stockage d’énergie n’a pas suivi cette tendance d’évolution très rapide ; ce qui constitue un handicap majeur dans les évolutions futures des systèmes portables. La transmission d’énergie sans fils sur des distances considérables (plusieurs dizaines de mètres) grâce aux microondes constitue une solution très prometteuse pour pallier aux problèmes d’autonomie dans le cas des systèmes sans fils communicants. De plus, du fait de l’omniprésence des ondes électromagnétiques dans notre environnement avec des niveaux plus ou moins importants, la récupération et l’exploitation de cette énergie libre est également possible. La rectenna (Rectifying Antenna) est le dispositif permettant de capter et de convertir une onde électromagnétique en une tension continue. Plusieurs travaux de thèse axés sur l’étude et l’optimisation de la rectenna ont été réalisés au sein du laboratoire. Ces travaux avaient montré que pour des faibles niveaux de champs les tensions délivrées par la rectenna sont généralement très faibles et inexploitables. Aussi, comme la majorité des micro-sources d’énergie et à cause de son impédance interne, les performances de la rectenna dépendent fortement de sa charge de sortie. Ainsi, le développement d’un système d’interfaçage de la rectenna est nécessaire afin de pallier ces manquements inhérents du convertisseur RF/DC. Ce genre de système d’interfaçage est généralement absent dans la littérature à cause des faibles niveaux de puissance exploités. Par conséquent, la rectenna est très souvent utilisée tel quelle ; ce qui limite fortement le champ applicatif. Dans ce projet de recherche, un système de gestion énergétique de la rectenna complètement autonome a été conçu, développé et optimisé afin de garantir les performances optimales de la rectenna quelques soient les fluctuations de la puissance d’entrée et celles de la charge de sortie. Le circuit d’interfaçage permet également de fournir à la charge des niveaux de tension utilisables. Le système réalisé est basé tout d’abord sur l’utilisation d’un convertisseur DC/DC résonant pouvant fonctionner d’une manière complètement autonome à partir de niveaux très bas de la tension et de la puissance de la source. Ce convertisseur permet donc de garantir l’autonomie du système en éliminant la nécessité d’une source d’énergie auxiliaire. A cause de ses faibles performances énergétiques, ce convertisseur ne sera utilisé que durant la phase de démarrage. L’efficacité du système en termes de rendement énergétique et d’adaptation d’impédance est garantie grâce à l’utilisation d’un convertisseur Flyback fonctionnant dans son régime de conduction discontinu. Ainsi, une adaptation d’impédance très efficace est réalisée entre la rectenna et la charge de sortie. Ce convertisseur principal fonctionnera durant le régime permanent. Les deux convertisseurs ont été optimisés pour des niveaux de tension et de puissance aussi bas que quelques centaines de mV et quelques μW respectivement. Des mesures expérimentales réalisées sur plusieurs prototypes ont démontré le bon fonctionnement et les excellentes performances prédites par la procédure de conception ; ce qui nous permet de valider notre approche. De plus, les performances obtenues se distinguent parfaitement vis-à-vis de l’état de l’art. Enfin, en fonction de l’application désirée, plusieurs synoptiques d’association des deux structures sont proposés. Ceci inclut également la gestion énergétique de la charge de sortie. / Latest advancements in microelectronic technologies and especially with the exponential increase of components and devices integration density have yield novel high technology and polyvalent portable systems. Such polyvalent communication devices need more and more available energy. Nonetheless, research in energy storage technology did not evolve with a similar speed. This constitutes a substantial handicap for the future evolution of portable devices. Wireless energy transfer through large distances such as tens of meters using microwaves is a very promising solution in order to deal with the autonomy problem in portable devices. In addition, since electromagnetic waves are ubiquitous in our environment, harvesting and using this free and available energy is also possible. Rectenna (Rectifying Antenna) is the device that allows to collect and to convert an electromagnetic wave into DC power. Several thesis research projects focusing on studying and optimizing the rectenna was carried-out into the Ampere laboratory. It has been shown that for a low level of the electromagnetic field the voltage provided by the rectenna is ultra-low and thus impractical. Further, as it is the case for the majority of energy harvesting micro-sources, the performances of the rectenna depend highly with the loading conditions. So, the development of an interfacing circuit for the rectenna is a necessary task in order to relieve the RF/DC converter inherent flaws. As it is pointed out into the literature, such power management circuit is in most cases absent due to the ultra-low power levels. In most cases, the rectenna is used as it; which reduces strongly the applications area. Within this research project, an ultra-low power and fully-autonomous power management system dedicated to rectennas was developed and optimized. It allows to guarantee highest performances of the rectenna whatever are the fluctuation of the input power level and the output load conditions. In addition, this power management system allows to provide a conventional voltage level to the load. The first part of the developed system is composed by a resonant DC/DC converter which plays the role of start-up circuit. In this case, no external energy source is required even with low voltage and ultra-low power source conditions. Because of its general poor energetic performances, this resonant converter will be used only during the start-up phase. The second part of the developed system is composed by a Flyback converter operating in its discontinuous conduction mode. Using this mode, the converter realizes static and very effective impedance matching with the rectenna in order to extract the maximum available power whatever are the input and the output conditions. Furthermore, thanks to the optimization procedure, the converter shows excellent efficiency performances even for μW power levels based on a discrete demonstrator. Finally, the converter provides conventional voltage levels allowing to power standard electronics. Experimental tests based on discrete prototypes for the both converters show distinguish results for the start-up voltage, the impedance matching effectiveness and the efficiency as regard to the state of the art.
Identifer | oai:union.ndltd.org:theses.fr/2013ECDL0051 |
Date | 12 December 2013 |
Creators | Adami, Salah-Eddine |
Contributors | Ecully, Ecole centrale de Lyon, Vollaire, Christian, Costa, François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds