Return to search

Amorçage en détonation des explosifs hétérogènes de type coulé fondu : Etablissement de corrélations entre microstructure et réactivité / Detonation initiation of heterogeneous melt-cast high explosives : Microstructure and reaction rate correlations

Ce travail de thèse porte sur les mécanismes d’amorçage en détonation par choc des explosifs solides de type coulé-fondu. Les explosifs solides sont des matériaux hétérogènes constitués de grains de matière énergétique dans un liant pouvant être lui-même énergétique. Si l’existence des points chauds, sites préférentiels d’initiation des réactions chimiques à l’échelle locale, est largement reconnue, la topologie de la croissance des réactions, et l’influence de la microstructure sur cette dernière n’est que peu étudiée dans les explosifs coulés-fondus. Deux familles d’explosifs ont été retenues pour cette étude : les hexolites, mélanges de grains d’hexogène (RDX) et d’un liant trinitrotoluène (TNT) et les ontalites, composées d’oxynitrotriazole (ONTA) et de TNT. Les recherches se sont orientées autour du triptyque : caractérisation – expérimentations – modélisation.Un important travail de compilation et de ré-exploitation de données issues de la littérature, associé à une modélisation des équations d’état des explosifs purs, ont permis de définir des lois permettant de calculer le comportement de ces derniers sous choc. Ces lois ont ensuite été validées par une méthode de mélange sur différentes compositions coulées-fondues et composites. Parallèlement, la microstructure des compositions d’étude a également été caractérisée via des mesures de granulométrie et de microtomographie, inédites sur ce type d’explosif.Des expérimentations d’impact plan soutenu ont été réalisées afin d’établir les diagrammes de marche des ondes de choc réactives, permettant de relier la profondeur de transition à la détonation à la pression de sollicitation. Elles ont permis de mettre en lumière l’influence de la microstructure sur la sensibilité au choc de deux hexolites et d’acquérir des données sur deux ontalites. L’utilisation de deux métrologies innovantes, la radio-interférométrie à 94 GHz et les fibres optiques à réseau de Bragg, a permis de mesurer la transition choc – détonation (TCD) de façon continue avec une résolution inédite. Enfin des essais d’impact plan non soutenu ont été réalisés à des fins de validation.Un modèle de TCD est proposé. Ce dernier, basé sur une approche de germination-croissance des fronts de déflagration à l’échelle locale, permet de prendre en compte la microstructure des explosifs. Ces travaux semblent mettre en évidence l’influence de la fracturation des grains d’explosif sous choc, qu’il conviendra d’étudier dans le futur. Enfin, une étape de terminaison des réactions lors de la TCD, associée à des calculs thermocinétiques détaillés, a été étudiée. / This study deals with the detonation initiation by shock of condensed melt-cast high explosives. Solid explosives are heterogeneous materials, made of energetic material grains in a binder, which can be energetic itself. If the existence of hot-spots, preferred initiation sites for chemical reaction at the local scale, is widely recognized, the reaction growth topology, and the microstructure influence, are poorly known for melt-cast explosives. We study here two melt-cast explosive families: hexolites, a mix of hexogen (RDX) grains and trinitrotoluene (TNT) binder, and ontalites made of nitrotriazolone (NTO) and TNT. This study has been focused on the triptyque: characterization - experimentations - modeling.An important work of compilation and re-exploitation of literature data, combined with pure explosives’ equation of state modeling, allowed us to define laws to calculate the explosives’ comportment under a shock solicitation. These ones have been validated, thanks to a mixing method, on different melt-cast and cast-curd plastic bonded explosives. At the same time, the compositions’ microstructure has been also characterized via granulometry measurements and microtomographies, never published for this type of explosive.Plate impact tests have been performed in order to establish the reactive shock trajectory of these compositions, allowing us to determine the relation between the run-distance of detonation and the input pressure. It brought the microstructure influence on hexolite shock sensitivity to light, and gave us some first results for ontalites. The use of continuous and innovative measurements, as microwave interferometry and chirped fiber Bragg gratings, allowed us to study the shock to detonation transition (SDT) with a resolution never seen before. Finally, non-sustained plate impact test have been performed for a validation purpose.A SDT model is proposed. Based on a germination-growth approach of deflagration fronts at the local scale, it takes into account the explosive’s microstructure. This work seems to show the grain fragmentation under shock influence, point we will have to study in the future. Finally, a completion step of reactions, associated with chemical kinetics calculations, has been studied.

Identiferoai:union.ndltd.org:theses.fr/2016SACLY014
Date20 October 2016
CreatorsChuzeville, Vincent Pierre
ContributorsUniversité Paris-Saclay (ComUE), Catoire, Laurent
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds