Return to search

Analyse mathématique et numérique de la propagation des fissures par le modèle de multi-couronnes

En mécanique de la rupture, les problèmes se posant avant l'initiation d'une fissure est caractérisé selon une démarche classique par une grandeur appelée Taux de Restitution d'Énergie. De grands efforts ont été consacrés à son interprétation mathématique et à la recherche de techniques pour son évaluation numérique. De nombreux travaux ont révélé que l'analyse des phénomènes se produisant après l'initiation des fissures (comme par exemple la stabilité de propagation des fissures ou leur vitesse de progression) fait intervenir des quantités comprenant des dérivations à l'ordre élevé, notamment la dérivée seconde, d'énergie potentielle par rapport à la longueur de fissures. Mais une description mathématique de ces dérivations et la recherche de techniques pour leur estimation numérique restent encore un problème ouvert dans la littérature. En effet le calcul des dérivées à l'ordre élevé présente des difficultés considérables dues à la haute singularité des solutions en fond de fissures. Le but principal de ce travail est alors d'élaborer, par une démonstration mathématique rigoureuse, une technique sophistiquée qui en permet une étude tant théorique que numérique. Nous nous limitons pour cela au cadre de la formulation lagrangienne, considérée comme un des outils les plus efficaces pour les problèmes linéaires ou non-linéaires de mécanique de la rupture. En s'appuyant sur la technique de perturbation de domaine, nous commençons par traiter le cas de chargement de surface. Par extension, les situations suivantes sont également mises en compte : 1) chargement thermique; 2) pression ou un champ de forces volumiques sur la fissure; 3) cas de structure en axisymétrique. Dans tous les cas, l'expression analytique de la dérivée seconde est mise sous une forme convenable pour l'étude numérique. Afin de montrer l'intérêt d'une méthode numérique précise, on étudie pour terminer et à titre d'exemple, la post-initiation de fissure pour des spécimens présentant, soit une seule fissure, soit plusieurs fissures interagissantes. Les résultats numériques obtenus par la méthode que nous proposons sont en bon accord avec d'autres venant d'approches différentes, et vérifient toutes les propriétés théoriques de la variation seconde du potentiel mécanique.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00574056
Date08 June 1990
CreatorsSuo, Xiao-Zheng
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds