In this thesis, we study the representation theory of the automorphism group Aut (Fn) of a free group by studying the representation theory of three finite subgroups: two symmetric groups, Sn and Sn+1, and a Coxeter group of type Bn, also known as a hyperoctahedral group. The representation theory of these subgroups is well understood in the language of Young Diagrams, and we apply this knowledge to better understand the representation theory of Aut (Fn). We also calculate irreducible representations of Aut (Fn) in low dimensions and for small n.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-1529 |
Date | 20 June 2005 |
Creators | Andrus, Ivan B. |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.002 seconds