Return to search

Frises et Algèbres amassées

Cette thèse traite du calcul explicite des variables amassées des algèbres amassées de types D et D[tilde] dans un premier temps et de la mutation des frises de type A dans un second temps. Elle a fait l’objet de deux articles montrant une étroite relation entre les frises et les algèbres amassées. Les algèbres amassées ont été introduites au début des années 2000 par Sergey Fomin et Andrei Zelevinsky. On connait l’existence d’une relation entre les algèbres amassées de type A et les frises de type A [CC06] et plus tard, cette relation a été étendue aux cas Dynkin et Euclidien en général [ARS10, AD11, AR12, ADSS11]. Nous avons utilisé cette relation entre les algèbres amassées et les frises pour calculer les variables amassées des algèbres amassées de types D et D[tilde] par des formules explicites au moyen du produit matriciel.
Étant donné un carquois Q de type D[indice inférieur n] ( ou D[tilde][indice inférieur n] ), nous établissons une relation entre les valeurs dans une frise de type D[indice inférieur n] ( ou D[tilde][indice inférieur n] ) et certaines valeurs dans une frise de type A[indice inférieur 2n-1] ( ou A[tilde][indice inférieur 2n-1, respectivement ) particulière. Ceci a permis de donner une formule explicite pour le calcul des variables amassées d’une algèbre amassée de type D ( ou D[tilde] ) à partir des résultats connus pour le cas A ( ou A[tilde], respectivement ).
Enfin, nous nous sommes intéressés à la mutation des frises de type A. Nous montrons une façon de muter une frise de type A, établissant ainsi une correspondance entre les flips de triangulations de polygones et les frises de type A et par conséquent une correspondance entre les mutations de carquois de type A et les mutations de frises de type A. Cette conséquence découle de la relation entre les flips de triangulations de surfaces et les mutations de carquois provenant des surfaces [FST08].

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/5345
Date January 2014
CreatorsMagnani, Kodjo Essonana
ContributorsAssem, Ibrahim, Shramchenko, Vasilisa
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeThèse
Rights© Kodjo Essonana Magnani

Page generated in 0.0014 seconds