Return to search

La aplicación de Gauss de superficies mínimas en el grupo de Heisenberg

El objetivo principal de este trabajo es el estudio de las superficies mínimas en el grupo de Heisenberg tridimensional, a partir de su aplicación de Gauss.
Inicialmente estudiamos la geometría riemanniana del grupo de Heisenberg con métrica invariante a izquierda, calculando los campos invariantes a izquierda, las curvaturas, las geodésicas y el grupo de isometrías de este espacio. Luego estudiamos las aplicaciones armónicas, desde un punto de vista geométrico, pues encontraremos que nuestra aplicación de Gauss es armónica en el disco de Poincaré. Esto nos permitirá construir una representación tipo Weierstrass para superficies mínimas en nuestro espacio ambiente. Finalmente, con esta representación obtendremos diferentes ejemplos de superficies mínimas en el grupo de Heisenberg. / Tesis

Identiferoai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/15414
Date26 November 2019
CreatorsDamazo Jaimes, Elton Rocky
ContributorsFigueroa Serrudo, Christiam Bernardo
PublisherPontificia Universidad Católica del Perú, PE
Source SetsPontificia Universidad Católica del Perú
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/masterThesis
Formatapplication/pdf
RightsAtribución 2.5 Perú, info:eu-repo/semantics/openAccess, http://creativecommons.org/licenses/by/2.5/pe/

Page generated in 0.0018 seconds