The global effort to rehabilitate and restore destroyed mangrove forests is unable to keep up with the high mangrove deforestation rates which exceed the average pace of global deforestation by three to five times. Our knowledge of the underlying processes of mangrove forest regeneration is too limited in order to find suitable techniques for the restoration of degraded mangrove areas. The general objective of my dissertation was to improve mangrove restoration by understanding regeneration processes and local plant-plant interaction in a regenerating Avicennia germinans forest.
The study was conducted in a high-shore mangrove forest area on the Ajuruteua peninsula, State of Para, Northern Brazil. The dwarf forest consisting of shrub-like trees is recovering from a stand-replacing event caused by a road construction in 1974 which interrupted the tidal inundation of the study area. Consequently, infrequent inundation and high porewater salinity limit tree growth and canopy closure.
All trees and seedlings were stem-mapped in six 20 m x 20 m plots which were located along a tree density gradient. Moreover, height, crown extent, basal stem diameter of trees were measured. The area of herbaceous ground vegetation and wood debris were mapped as well. The mapped spatial distribution of trees, seedlings and covariates was studied using point pattern analysis and point process models, such as Gibbs and Thomas point process, in order to infer underlying ecological processes, such as seed dispersal, seedling establishment, tree recruitment and tree interaction.
In the first study (chapter 2), I analyzed the influence of abiotic and biotic factors on the seedling establishment and tree recruitment of A. germinans during the recolonization of severely degraded mangrove sites using point process modeling. Most seedlings established adjacent to adult trees especially under their crown cover. Moreover, seedling density was higher within patches of the herbaceous salt-marsh plants Blutaparon portulacoides and Sesuvium portulacastrum than in uncovered areas. The higher density of recruited A. germinans trees in herb patches indicated that ground vegetation did not negatively influence tree development of A. germinans. In addition, tree recruitment occurred in clusters. Coarse wood debris had no apparent effect on either life stage. These results confirm that salt-marsh vegetation acts as the starting point for mangrove recolonization and indicate that the positive interaction among trees accelerates forest regeneration.
In the second study (chapter 3), I analyzed how intraspecific interaction among A. germinans trees determines their growth and size under harsh environmental conditions. Interaction among a higher number of neighboring trees was positively related to the development of a focal tree. However, tree height, internode length and basal stem diameter were only positively associated in low-density forest stands (1.2 trees m-2) and not in forest stands of higher tree density (2.7 trees m-2). These results indicated a shift from facilitation, i.e. a positive effect of tree interaction, towards a balance between facilitation and competition.
In the third study (chapter 4), I used point process modeling and the individual-based model mesoFON to disentangle the impact of regeneration and interaction processes on the spatial distribution of seedlings and trees. In this infrequently inundated area, propagules of A. germinans are only dispersed at a maximum distance of 3 m from their parent tree. Furthermore, there is no evidence that the following seedling establishment is influenced by trees. I was able to differentiate positive and negative tree interactions simulated by the mangrove model mesoFON regardless of dispersal processes based on static tree size information using the mark-correlation function.
The results of this dissertation suggest that mangrove forest regeneration in degraded areas is a result of facilitative and not competitive interactions among mangrove trees, seedling and herbaceous vegetation. This has important implications for the restoration of degraded mangrove forest. Degraded mangrove areas are usually restored by planting a high number of evenly spaced seedlings. However, high costs constrain this approach to small areas. Assisting natural regeneration could be a less costly alternative. Herbaceous vegetation plays a crucial role in forest recolonization by entrapping propagules and possibly ameliorating harsh environmental conditions. So far only competition among mangrove trees has been considered during restoration. However, facilitative tree interactions could be utilized by planting seedling clusters in order to assist natural regeneration instead of planting seedlings evenly-spaced over large areas.
This dissertation also showed that point pattern analysis and point process modeling can enable forest ecologists to describe the spatial distribution of trees as well as to infer underlying ecological processes.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-171569 |
Date | 13 July 2015 |
Creators | Pranchai, Aor |
Contributors | Technische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. Uta Berger, Prof. Dr. Uta Berger, Prof. Dr. Sven Wagner, Prof. Dr. Farid Dahdouh-Guebas |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0026 seconds