Dans les situations convexes, le problème d'optimisation globale peut être abordé par un ensemble de méthodes classiques, telles, par exemple, celles basées sur le gradient, qui ont montré leur efficacité en ce domaine. Lorsque la situation n'est pas convexe, ces méthodes peuvent être mises en défaut et ne pas trouver un optimum global. La contribution de cette thèse est une méthodologie pour la détermination de l'optimum global d'une fonction non convexe, en utilisant des algorithmes hybrides basés sur un couplage entre des algorithmes stochastiques issus de familles connues, telles, par exemple, celle des algorithmes génétiques ou celle du recuit simulé et des algorithmes déterministes perturbés aléatoirement de façon convenable. D'une part, les familles d'algorithmes stochastiques considérées ont fait preuve d'efficacité pour certaines classes de problèmes et, d'autre part, l'adjonction de perturbations aléatoires permet de construire des méthodes qui sont en théorie convergents vers un optimum global. En pratique, chacune de ces approches a ses limitations et insuffisantes, de manière que le couplage envisagé dans cette thèse est une alternative susceptible d'augmenter l'efficacité numérique. Nous examinons dans cette thèse quelques unes de ces possibilités de couplage. Pour établir leur efficacité, nous les appliquons à des situations test classiques et à un problème de nature stochastique du domaine des transports.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00560887 |
Date | 21 November 2009 |
Creators | Zeriab, Mohamed Zeriab |
Publisher | INSA de Rouen |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds