Nous étudions la possibilité de réaliser des cellules à base de diséléniure de cuivre, indium et gallium (CIGSe) à absorbeur ultra-mince, en réduisant l’épaisseur de la couche de CIGSe de 2500 nm jusqu’à 100 nm, tout en conservant un haut rendement de conversion.Grâce à l’utilisation d’outils de simulation numérique, nous étudions l’influence de la réduction d’épaisseur de l’absorbeur sur les paramètres photovoltaïques de la cellule. Une importante dégradation du rendement est observée, principalement attribuée à une réduction de la fraction de lumière absorbée par le CIGSe ainsi qu’à une collecte des porteurs de charge réduite dans les dispositifs ultraminces. Des solutions permettant de surmonter ces problèmes sont proposées et leur influence potentielle est numériquement simulée ; nous démontrons qu’une ingénierie de face avant (couche tampon alternative, couche anti-réfléchissante…) et de face arrière (contact arrière réfléchissant, diffusion de la lumière) sur une cellule CIGSe à absorbeur ultramince permet de potentiellement améliorer le rendement de la cellule solaire au niveau de celui d’une cellule à absorbeur référence (2.5 μm).Grâce à l’utilisation de techniques de gravure chimique sur des échantillons standards de CIGSe épais, nous réalisons des cellules solaires avec différentes épaisseurs d’absorbeurs, et nous étudions l’influence de l’épaisseur du CIGSe sur les paramètres photovoltaïques des cellules. Le comportement similaire aux simulations numériques.Une ingénierie du contact avant sur des cellules CIGSe à différentes épaisseurs est réalisée pour spécifiquement améliorer l’absorption dans la couche de CIGSe. Nous étudions l’influence d’une couche tampon alternative de ZnS, de la texturation de la fenêtre avant de ZnO:Al, et d’une couche anti-reflet sur la cellule solaire. D’importantes améliorations sont observées quelque soit l’épaisseur de la couche de CIGSe, ce qui permet d’obtenir des rendements de conversions supérieurs à ceux obtenus dans la configuration standard des dispositifs.Une ingénierie du contact arrière à basse température est également réalisée avec l’utilisation d’un procédé novateur combinant la gravure chimique du CIGSe avec un « lift-off » mécanique de la couche de CIGSe afin de la séparer du substrat de Molybdène. De nouveaux matériaux fortement réflecteur de lumière et précédemment incompatible avec le procédé de croissance du CIGSe sont utilisés comme contact arrière pour des cellules CIGSe ultra-minces. Une étude comparative en fonction de l’épaisseur de CIGSe entre des cellules avec contact arrière réfléchissant en Or (Au) et cellules solaires avec contact arrière standard Mo est effectuée. Le contact Au permet d’augmenter significativement le rendement de conversion des cellules solaires à absorbeur sub-microniques comparé au contact standard Mo avec un rendement de conversion supérieur à 10% obtenu sur une cellule CIGSe de 400 nm (comparé à 7.9% avec Mo).Afin de réduire encore plus l’épaisseur de la couche de CIGSe, jusque 100-200 nm, les modèles numériques montrent qu’il est nécessaire d’utiliser un réflecteur lambertien sur la face arrière de la cellule afin de maximiser l’absorption de la lumière. Un dispositif preuve de concept expérimental est réalisé avec une épaisseur de CIGSe de 200 nm et un réflecteur arrière lambertien, et ce dispositif est caractérisé par spectroscopie de transmission/réflexion. La réponse spectrale est déterminée en combinant des valeurs issues de simulation numérique et la mesure expérimental de l’absorption du dispositif. Nous calculons un courant de court circuit de 26 mA.cm-2 pour ce dispositif avec réflecteur lambertien, bien supérieur à ce qui est calculé pour la même structure sans réflecteur (15 mA.cm-2), et comparable au courant mesuré sur une cellule de référence de 2500 nm (28 mA.cm-2). L’utilisation de réflecteur lambertien pour des cellules CIGSe ultraminces est donc particulièrement adaptée pour maintenir de hauts rendements. / In this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collection for thin and ultrathin CIGSe solar cells. Solutions to overcome these problems are proposed and the potential improvements are modeled; we show that front side (buffer layer, antireflection coating) and back side (reflective back contact, light scattering) engineering of an ultrathin device can potentially increase the conversion efficiency up to the level of a standard thick CIGSe solar cell.By using chemical bromine etching on a standard thick CIGSe layer, we realize solar cells with different absorber thicknesses and experimentally study the influence of the absorber thickness on the photovoltaic parameters of the devices. Experiments show a similar trends to that observed in numerical modeling.Front contact engineering on thin CIGSe solar cell is realized to increase the specific absorption in CIGSe, including alternative ZnS buffer, front ZnO:Al window texturation and anti-reflection coating. Substantial improvements are observed whatever the CIGSe thickness, with efficiencies higher that the default configuration.A back contact engineering at low temperature is realized by using an innovative approach combining chemical etching of the CIGSe and mechanical lift-off of the CIGSe from the original Molybdenum (Mo) substrate. New highly reflective materials previously incompatible with the standard solar cell process are used as back contact for thin and ultrathin CIGSe solar cells, and a comparative study between standard Mo back contact and alternative reflective Au back contact solar cells is performed. The Au back reflector significantly enhance the efficiency of solar cell with sub-micrometer absorbers compared to the standard Mo back reflector; an efficiency higher than 10 % on a 400 nm CIGSe is obtained with Au back contact (7.9% with standard Mo back contact). For further reduction of the absorber thickness down to 100-200 nm, numerical modeling show that a lambertian back reflector is needed to fully absorb the incident light in the CIGSe. An experimental proof of concept device with a CIGSe thickness of 200 nm and a lambertian back reflector is realized and characterized by reflection/transmission spectroscopy, and the experimental spectral response is determined by combining simulation and experimentally measured absorption. A short circuit current of 26 mA.cm-2 is determined with the lambertian back reflector, which is much higher than what is obtained for the same device with no reflector (15 mA.cm-2), and comparable to the short circuit current measured on a reference 2500 nm thick CIGSe solar cell (28 mA.cm-2). Lambertian back reflectors are therefore found to be the most effective way to enhance the efficiency of an ultrathin CIGSe solar cell up to the level of a reference thick CIGSe solar cell.
Identifer | oai:union.ndltd.org:theses.fr/2012PA112058 |
Date | 04 April 2012 |
Creators | Jehl, Zacharie |
Contributors | Paris 11, Naghavi, Negar, Lincot, Daniel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0028 seconds