Return to search

Hipersuperfícies mínimas completas estáveis com curvatura total finita / Stable complete minimal hypersurfaces with finite total curvature

The main goal of this dissertation is to present some results on minimal hypersurfaces in the Euclidean space related to the stability operator. Initially, we will present the demonstrations of the formulas of first and second variations of area and also the demonstration of the Simons inequality. These results (which are basic results of the theory) will be used later. Next we will present the proof of the do Carmo-Peng s theorem showing that a complete stable minimal hypersurface immersed in the Euclidean space with finite L2 norm of the second fundamental form is a hyperplane. We will include in this dissertation a similar result with the L3 norm of the second fundamental form. This last result was proved by Li-Wei in the case where the hypersurface has dimension 3, but we note that proof applies to 3≤n≤7. We will conclude by presenting some results on non-stable minimal hypersurfaces in R^3 due to Fischer-Colbrie and Lopez-Ros. In particular, we will show that the catenoid and Enneper s surface are the only minimal complete orientable surfaces with index equal to one. / O objetivo principal desta dissertação é apresentar alguns resultados importantes sobre hipersuperfícies mínimas no espaço Euclidiano relacionados com o operador de estabilidade. Inicialmente, apresentaremos as demonstrações das fórmulas da primeira e da segunda variações da área bem como a demonstração da desigualdade de Simons. Estes resultados, que são básicos da teoria, serão usados posteriormente. Em seguida, apresentaremos a demonstração do teorema de do Carmo-Peng, o qual assegura que uma hipersuperfície mínima completa estável imersa no espaço Euclidiano com a norma L2 da segunda forma fundamental finita é um hiperplano. Incluiremos na dissertação um resultado análogo com a norma L3 da segunda forma fundamental. Este último resultado foi provado por Li-Wei no caso em que a hipersuperfície tem dimensão 3, mas notamos que a demonstração se aplica para 3≤n≤7. Concluiremos apresentando alguns resultados sobre hipersuperfícies mínimas não estáveis no R^3 obtido por Fischer-Colbrie e López-Ros. Em particular, mostraremos que o catenóide e a superfície de Enneper são as únicas superfícies mínimas completas e orientadas com índice igual a um.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufal.br:riufal/897
Date30 March 2010
CreatorsRocha, Robério Batista da
ContributorsCavalcante, Marcos Petrucio de Almeida, CAVALCANTE, M. P. A., Vitório, Feliciano Marcílio Aguiar, http://lattes.cnpq.br/8169655312890757, Lira, Jorge Herbert Soares de, http://lattes.cnpq.br/1873757687453531, Silva, Hilário Alencar da, http://lattes.cnpq.br/1661480072159875
PublisherUniversidade Federal de Alagoas, BR, Processos de superfície terrestre, Programa de Pós-Graduação em Meteorologia, UFAL
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageUnknown
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFAL, instname:Universidade Federal de Alagoas, instacron:UFAL
Rightsinfo:eu-repo/semantics/openAccess
Relationbitstream:http://www.repositorio.ufal.br:8080/bitstream/riufal/897/1/Dissertacao_Roberio+Batista+da+Rocha_2010.pdf, bitstream:http://www.repositorio.ufal.br:8080/bitstream/riufal/897/2/Dissertacao_Roberio+Batista+da+Rocha_2010.pdf.txt

Page generated in 0.0024 seconds