Return to search

New gate drive unit concepts for IGBTs and reverse conducting IGBTs

This work presents different novel gate drive unit (GDU) concepts for IGBT and reverse conducting IGBT (RC-IGBT). They have been experimentally tested with medium voltage class IGBT modules (1200...1700V/650…1400A) and a RC-IGBT module (1200V/200A). The switching behaviour of the RC-IGBT was investigated, and a new trigger pulse pattern to drive the RC-IGBT was developed, designed and implemented. The experimental results showed that the switching losses were reduced by 20% in the RC-IGBT compared to the switching losses of a standard diode.

Two novel schemes are introduced to estimate the collector current through the IGBT, based on the measurement of the voltage across the internal stray inductance of the IGBT module. Furthermore, a GDU concept was derived to balance the on-state collector currents of parallel-connected IGBTs, reducing the current imbalance to 5%. Also, a new fast short circuit protection method (FSCP) for IGBT modules was developed, designed and implemented in another GDU, allowing turning-off the considered IGBT in less than 1μs, reducing the IGBT stress. Another scheme implemented in a GDU features an improved gate current switching profile of the IGBT, which reduces the switching losses by 25% compared to the standard switching method. In order to reduce the conduction losses, a GDU with an increased turn-on gate-emitter voltage (larger than 20 V) was investigated. In the investigated IGBT, the on-state losses were reduced by 18% when a gate-emitter voltage of 35V is used compared to when a gate-emitter voltage of 15V is used.

All these new GDU concepts have been implemented with a simple and inexpensive electronic circuitry, which is an important feature for a possible industrial implementation.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-231024
Date27 November 2017
CreatorsLizama Arcos, Ignacio Esteban
ContributorsTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Prof. Dr.-Ing. Steffen Bernet, Prof. Dr.-Ing. Steffen Bernet, Prof. Dr.-Ing. Tobias Reimann
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0026 seconds