Return to search

The role of monocytes, macrophages and the microbiota in age-associated inflammation during the steady state and anti-bacterial immunity

Inflammaging is a hallmark of human aging. Defined as low-grade, chronic inflammation, it is characterized by heightened proinflammatory cytokines in the blood and tissues and predicts morbidity and mortality. Despite this, the etiology of inflammaging and its role in infection have remained elusive, an issue this thesis addressed. First, we provided a comprehensive overview of an intranasal Streptococcus pneumoniae colonization model (Chapter 2). We described in detail the colonization technique, and demonstrated how to isolate and phenotype recruited cells, quantify bacterial load and measure production of immune mediators in the nasopharynx. Since both myeloid cell recruitment and tumour necrosis factor (TNF) production were increased following S. pneumoniae colonization with age, we investigated whether TNF directly augmented monocyte frequency (Chapter 3). TNF increased CCR2 expression on monocytes in old mice, leading to their enhanced egress from the bone marrow, resulting in enrichment of this population in the circulation. Monocyte numbers directly influenced plasma IL-6 levels, and this negatively impacted anti-bacterial responses, as monocyte blockade improved pneumococcal clearance in old mice. Lastly, to better understand the fundamental source of inflammaging, we studied the impact of the host microbiome on its development. This work was rooted in Elie Metchnikoff’s early predictions that leakage of intestinal bacterial products could dysregulate macrophage function, resulting in inflammation that would progress aging (Chapter 4). We showed that old mice had increased intestinal permeability, aberrant expression of cellular junction genes and increased microbial translocation from the gut to the blood. Germ-free mice lived longer than their conventionally colonized counterparts, and were protected from the development of inflammaging and defective macrophage function. Together, these studies resolve a major disparity in the field by demonstrating that systemic TNF production is initiated by increased levels of circulating bacterial products, driving functional defects in myeloid cells, which ultimately impairs anti-bacterial immunity. / Thesis / Candidate in Philosophy

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16441
Date19 November 2014
CreatorsPuchta, Alicja
ContributorsBowdish, Dawn, Medical Sciences (Molecular Virology and Immunology Program)
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds