Return to search

The Influence of the Insulin-Like Gene Family and Diet-Drug Interactions on Caenorhabditis elegans Physiology: A Dissertation

Aging can be defined as the accumulation of changes affecting the maintenance of homeostatic processes over time, leading to functional decline and increased risk for disease and death. In its simplicity, aging is the systemwide deterioration of an organism. Genetic studies have identified many potential molecular mechanisms of aging including DNA damage, telomere shortening, mitochondrial dysfunction, increased oxidative stress, uncontrolled inflammation, and hormone dysregulation (reviewed in [1]). However, in reality, aging is likely to be a combination of some (or potentially all) of these mechanisms.
Interestingly, aging and metabolism are tightly coordinated. Aging is a major contributor to metabolic decline and related diseases, including type 2 diabetes, metabolic syndrome, and cancer. One of the best characterized metabolic pathways implicated in aging is the insulin/IGF-1 signaling (IIS) pathway. Downstream signaling components of the IIS pathway receptor have been well studied and include an interconnected network of signaling events that regulate many physiological outputs. However, less is known about the role of upstream signaling components and how intracellular pathways and physiology are regulated accordingly. In Part I, I present my work towards understanding upstream IIS pathway components using a systems biology approach. The goal of this study is to gain insight into the redundancy and specificity of the insulin gene family responsible for initiating IIS pathway activity in Caenorhabditis elegans. The information gained will serve as a foundation for future studies dissecting the molecular mechanisms of this pathway in efforts to uncouple the downstream signaling and physiological outputs.
The clear impact of metabolism on aging and disease stimulated questions regarding the potential of promoting health and longevity through diet and dietary mimetics. Recent findings indicate reduced food intake, meal timing and nutritional modulation of the gut microbiome can ameliorate signs of aging and age-associated diseases. Aging, therefore, is also the result of dynamic and complex interplay between genes of an organism and its environment. In Part II, I will discuss my efforts to gain insight into how diet influences aging. This preliminary study has demonstrated that diet can affect lifespan in the model organism, C. elegans. Additionally, we observe diet-specific effects on drug efficacy that, in turn, modulates C. elegans lifespan and reproduction. The implications of these experiments, while limited, illustrate a potentially greater role in diet- and drug-mediated effects on lifespan.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1874
Date10 August 2015
CreatorsRitter, Ashlyn D.
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved.

Page generated in 0.0016 seconds