This bachelor thesis within the field of mathematical statistics aims to study the possibility of predicting specifically large claims from non-life insurance policies with commercial policyholders. This is done through regression analysis, where we seek to develop and evaluate a generalized linear model, GLM. The project is carried out in collaboration with the insurance company If P&C Insurance and most of the research is conducted at their headquarters in Stockholm. The explanatory variables of interest are characteristics associated with the policyholders. Due to the scarcity of large claims in the data set, the prediction is done in two steps. Firstly, logistic regression is used to model the probability of a large claim occurring. Secondly, the magnitude of the large claims is modelled using a generalized linear model with a gamma distribution. Two full models with all characteristics included are constructed and then reduced with computer intensive algorithms. This results in two reduced models, one with two characteristics excluded and one with one characteristic excluded. / Det här kandidatexamensarbetet inom matematisk statistik avser att studera möjligheten att predicera särskilt stora skador från sakförsäkringspolicys med företag som försäkringstagare. Detta görs med regressionsanalys, där vi ämnar att utveckla och bedöma en generaliserad linjär modell, GLM. Projektet utförs i samarbete med försäkringsbolaget If Skadeförsäkring och merparten av undersökningen sker på deras huvudkontor i Stockholm. Förklaringsvariablerna som är av intresse att undersöka är egenskaper associerade med försäkringstagarna. På grund av sällsynthet av storskador i datamängden görs prediktionen i två steg. Först används logistisk regression för att modellera sannolikheten för en storskada att inträffa. Sedan modelleras storskadornas omfattning genom en generaliserad linjär modell med en gammafördelning. Två grundmodeller med alla förklaringsvariabler konstrueras för att sedan reduceras med datorintensiva algoritmer. Det resulterar i två reducerade modeller, med två respektive en kundegenskap utesluten.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-228983 |
Date | January 2018 |
Creators | Barnholdt, Jacob, Grafford, Josefin |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2018:187 |
Page generated in 0.0028 seconds