Spelling suggestions: "subject:"försäkringsprissättning"" "subject:"försäkringsersättning""
1 |
Double Machine Learning for Insurance Price Optimization / Dubbel maskininlärning för prisoptimering inom försäkringKristiansson, Jakob January 2023 (has links)
This thesis examines how recent advances in debaised machine learning can be used for estimating price elasticities of demand within the automotive insurance field. Traditional methods such as generalized linear model (GLM) to estimate demand has no way of ensuring there are no biases in the underlying data selection, especially when the confounding variables are many. These approaches instead rely on the user’s experience to remove biases in the data. Advances, in the crossing fields between economics and machine learning have however found new approaches to debias datasets automatically through the double machine learning approach (DML). Using a large data set of insurance offers and sales from a Swedish insurance company, the double machine learning approach first described by Chernozhukov et al. (2016) is used to estimate the price elasticity of demand for individual customers. The price elasticities are then grouped on variables of importance and combined with the loss ratio of the segment in order to optimize the existing insurance tariff. In terms of model performance, the importance of the first stage classifier and regressor proved to be important for the final results. In alignment with expectations of the results, higher premium cars such as BMW and Mercedes proved to be more price sensitive. However, these brands also had higher loss ratios which resulted in a lower potential for lowering prices. Aligning the price elasticity with the loss ratios and the company’s strategy was found to be an important aspect. On average, the automotive insurance industry was shown to be price sensitive with few segments of inelastic characteristics. / I denna rapport undersöks hur de senaste framstegen inom maskininlärning kan användas för att uppskatta priselasticiteten hos efterfrågan inom bilförsäkringar. Traditionella metoder som generalized linear model (GLM) för att uppskatta efterfrågan har inget sätt att säkerställa att det inte finns några biaser i det underliggande dataurvalet, särskilt inte när det finns många variabler som kan påverka. Dessa metoder förlitar sig i stället på användarens erfarenhet för att ta bort bias i variablerna. Inom området där ekonomi och maskininlärning korsas har man däremot funnit nya metoder för att automatiskt ta bort bias i dataset genom dubbel maskininlärning (DML). Med hjälp av en stor datamängd av försäkringsofferter och försäljningsresultat från ett svenskt försäkringsbolag används den dubbla maskininlärningsmetoden som först beskrevs av Chernozhukov et al. (2016) för att uppskatta priselasticiteten hos individuella kunder. Priselasticiteterna grupperas sedan på variabler av intresse och kombineras med segmentets skadefrekvens för att optimera den befintliga försäkringstariffen. När det gäller modellens prestanda visade sig betydelsen av det första stegets klassificerare och regressorer vara viktiga för slutresultaten. I linje med förväntningarna på slutresultatet visade sig bilar med högre premier, som BMW och Mercedes, vara mer priskänsliga. Dessa märken hade dock också högre skadefrekvenser, vilket resulterade i en lägre potential för prissänkningar. En viktig slutsats från resultat var vikten av att justera och anpassa prisoptimeringen efter segmentets skadefrekvens och företagets strategi. I genomsnitt visade sig bilförsäkringsbranschen vara priskänslig med få segment med oelastiska egenskaper.
|
2 |
Modelling Non-life Insurance Policyholder Price Sensitivity : A Statistical Analysis Performed with Logistic Regression / Modellering av priskänslighet i sakförsäkringHardin, Patrik, Tabari, Sam January 2017 (has links)
This bachelor thesis within mathematical statistics studies the possibility of modelling the renewal probability for commercial non-life insurance policyholders. The project was carried out in collaboration with the non-life insurance company If P&C Insurance Ltd. at their headquarters in Stockholm, Sweden. The paper includes an introduction to underlying concepts within insurance and mathematics and a detailed review of the analytical process followed by a discussion and conclusions. The first stages of the project were the initial collection and processing of explanatory insurance data and the development of a logistic regression model for policy renewal. An initial model was built and modern methods of mathematics and statistics were applied in order obtain a final model consisting of 9 significant characteristics. The regression model had a predictive power of 61%. This suggests that it to a certain degree is possible to predict the renewal probability of non-life insurance policyholders based on their characteristics. The results from the final model were ultimately translated into a measure of price sensitivity which can be implemented in both pricing models and CRM systems. We believe that price sensitivity analysis, if done correctly, is a natural step in improving the current pricing models in the insurance industry and this project provides a foundation for further research in this area. / Detta kandidatexamensarbete inom matematisk statistik undersöker möjligheten att modellera förnyelsegraden för kommersiella skadeförsärkringskunder. Arbetet utfördes i samarbete med If Skadeförsäkring vid huvudkontoret i Stockholm, Sverige. Uppsatsen innehåller en introduktion till underliggande koncept inom försäkring och matematik samt en utförlig översikt över projektets analytiska process, följt av en diskussion och slutsatser. De huvudsakliga delarna av projektet var insamling och bearbetning av förklarande försäkringsdata samt utvecklandet och tolkningen av en logistisk regressionsmodell för förnyelsegrad. En första modell byggdes och moderna metoder inom matematik och statistik utfördes för att erhålla en slutgiltig regressionsmodell uppbyggd av 9 signifikanta kundkaraktäristika. Regressionsmodellen hade en förklaringsgrad av 61% vilket pekar på att det till en viss grad är möjligt att förklara förnyelsegraden hos försäkringskunder utifrån dessa karaktäristika. Resultaten från den slutgiltiga modellen översattes slutligen till ett priskänslighetsmått vilket möjliggjorde implementering i prissättningsmodeller samt CRM-system. Vi anser att priskänslighetsanalys, om korrekt genomfört, är ett naturligt steg i utvecklingen av dagens prissättningsmodeller inom försäkringsbranschen och detta projekt lägger en grund för fortsatta studier inom detta område.
|
3 |
Predicting Large Claims within Non-Life Insurance / Prediktion av storskador inom sakförsäkringBarnholdt, Jacob, Grafford, Josefin January 2018 (has links)
This bachelor thesis within the field of mathematical statistics aims to study the possibility of predicting specifically large claims from non-life insurance policies with commercial policyholders. This is done through regression analysis, where we seek to develop and evaluate a generalized linear model, GLM. The project is carried out in collaboration with the insurance company If P&C Insurance and most of the research is conducted at their headquarters in Stockholm. The explanatory variables of interest are characteristics associated with the policyholders. Due to the scarcity of large claims in the data set, the prediction is done in two steps. Firstly, logistic regression is used to model the probability of a large claim occurring. Secondly, the magnitude of the large claims is modelled using a generalized linear model with a gamma distribution. Two full models with all characteristics included are constructed and then reduced with computer intensive algorithms. This results in two reduced models, one with two characteristics excluded and one with one characteristic excluded. / Det här kandidatexamensarbetet inom matematisk statistik avser att studera möjligheten att predicera särskilt stora skador från sakförsäkringspolicys med företag som försäkringstagare. Detta görs med regressionsanalys, där vi ämnar att utveckla och bedöma en generaliserad linjär modell, GLM. Projektet utförs i samarbete med försäkringsbolaget If Skadeförsäkring och merparten av undersökningen sker på deras huvudkontor i Stockholm. Förklaringsvariablerna som är av intresse att undersöka är egenskaper associerade med försäkringstagarna. På grund av sällsynthet av storskador i datamängden görs prediktionen i två steg. Först används logistisk regression för att modellera sannolikheten för en storskada att inträffa. Sedan modelleras storskadornas omfattning genom en generaliserad linjär modell med en gammafördelning. Två grundmodeller med alla förklaringsvariabler konstrueras för att sedan reduceras med datorintensiva algoritmer. Det resulterar i två reducerade modeller, med två respektive en kundegenskap utesluten.
|
4 |
Combined Actuarial Neural Networks in Actuarial Rate Making / Kombinerade aktuariska neurala nätverk i aktuarisk tariffanalysGustafsson, Axel, Hansén, Jacob January 2021 (has links)
Insurance is built on the principle that a group of people contributes to a common pool of money which will be used to cover the costs for individuals who suffer from the insured event. In a competitive market, an insurance company will only be profitable if their pricing reflects the covered risks as good as possible. This thesis investigates the recently proposed Combined Actuarial Neural Network (CANN), a model nesting the traditional Generalised Linear Model (GLM) used in insurance pricing into a Neural Network (NN). The main idea of utilising NNs for insurance pricing is to model interactions between features that the GLM is unable to capture. The CANN model is analysed in a commercial insurance setting with respect to two research questions. The first research question, RQ 1, seeks to answer if the CANN model can outperform the underlying GLM with respect to error metrics and actuarial model evaluation tools. The second research question, RQ 2, seeks to identify existing interpretability methods that can be applied to the CANN model and also showcase how they can be applied. The results for RQ 1 show that CANN models are able to consistently outperform the GLM with respect to chosen model evaluation tools. A literature search is conducted to answer RQ 2, identifying interpretability methods that either are applicable or are possibly applicable to the CANN model. One interpretability method is also proposed in this thesis specifically for the CANN model, using model-fitted averages on two-dimensional segments of the data. Three interpretability methods from the literature search and the one proposed in this thesis are demonstrated, illustrating how these may be applied. / Försäkringar bygger på principen att en grupp människor bidrar till en gemensam summa pengar som används för att täcka kostnader för individer som råkar ut för den försäkrade händelsen. I en konkurrensutsatt marknad kommer försäkringsbolag endast vara lönsamma om deras prissättning är så bra som möjligt. Denna uppsats undersöker den nyligen föreslagna Combined Actuarial Neural Network (CANN) modellen som bygger in en Generalised Linear Model (GLM) i ett neuralt nätverk, i en praktiskt och kommersiell försäkringskontext med avseende på två forskningsfrågor. Huvudidén för en CANN modell är att fånga interaktioner mellan variabler, vilket en GLM inte automatiskt kan göra. Forskningsfråga 1 ämnar undersöka huruvida en CANN modell kan prestera bättre än en GLM med avseende på utvalda statistiska prestationsmått och modellutvärderingsverktyg som används av aktuarier. Forskningsfråga 2 ämnar identifiera några tolkningsverktyg som kan appliceras på CANN modellen samt demonstrera hur de kan användas. Resultaten för Forskningsfråga 1 visar att CANN modellen kan prestera bättre än en GLM. En literatursökning genomförs för att svara på Forskningsfråga 2, och ett antal tolkningsverktyg identifieras. Ett tolkningsverktyg föreslås också i denna uppsats specifikt för att tolka CANN modellen. Tre av tolkningsverktygen samt det utvecklade verktyget demonstreras för att visa hur de kan användas för att tolka CANN modellen.
|
5 |
Combined Actuarial Neural Networks in Actuarial Rate Making / Kombinerade aktuariska neurala nätverk i aktuarisk tariffanalysGustafsson, Axel, Hansen, Jacob January 2021 (has links)
Insurance is built on the principle that a group of people contributes to a common pool of money which will be used to cover the costs for individuals who suffer from the insured event. In a competitive market, an insurance company will only be profitable if their pricing reflects the covered risks as good as possible. This thesis investigates the recently proposed Combined Actuarial Neural Network (CANN), a model nesting the traditional Generalised Linear Model (GLM) used in insurance pricing into a Neural Network (NN). The main idea of utilising NNs for insurance pricing is to model interactions between features that the GLM is unable to capture. The CANN model is analysed in a commercial insurance setting with respect to two research questions. The first research question, RQ 1, seeks to answer if the CANN model can outperform the underlying GLM with respect to error metrics and actuarial model evaluation tools. The second research question, RQ 2, seeks to identify existing interpretability methods that can be applied to the CANN model and also showcase how they can be applied. The results for RQ 1 show that CANN models are able to consistently outperform the GLM with respect to chosen model evaluation tools. A literature search is conducted to answer RQ 2, identifying interpretability methods that either are applicable or are possibly applicable to the CANN model. One interpretability method is also proposed in this thesis specifically for the CANN model, using model-fitted averages on two-dimensional segments of the data. Three interpretability methods from the literature search and the one proposed in this thesis are demonstrated, illustrating how these may be applied. / Försäkringar bygger på principen att en grupp människor bidrar till en gemensam summa pengar som används för att täcka kostnader för individer som råkar ut för den försäkrade händelsen. I en konkurrensutsatt marknad kommer försäkringsbolag endast vara lönsamma om deras prissättning är så bra som möjligt. Denna uppsats undersöker den nyligen föreslagna Combined Actuarial Neural Network (CANN) modellen som bygger in en Generalised Linear Model (GLM) i ett neuralt nätverk, i en praktiskt och kommersiell försäkringskontext med avseende på två forskningsfrågor. Huvudidén för en CANN modell är att fånga interaktioner mellan variabler, vilket en GLM inte automatiskt kan göra. Forskningsfråga 1 ämnar undersöka huruvida en CANN modell kan prestera bättre än en GLM med avseende på utvalda statistiska prestationsmått och modellutvärderingsverktyg som används av aktuarier. Forskningsfråga 2 ämnar identifiera några tolkningsverktyg som kan appliceras på CANN modellen samt demonstrera hur de kan användas. Resultaten för Forskningsfråga 1 visar att CANN modellen kan prestera bättre än en GLM. En literatursökning genomförs för att svara på Forskningsfråga 2, och ett antal tolkningsverktyg identifieras. Ett tolkningsverktyg föreslås också i denna uppsats specifikt för att tolka CANN modellen. Tre av tolkningsverktygen samt det utvecklade verktyget demonstreras för att visa hur de kan användas för att tolka CANN modellen.
|
Page generated in 0.1145 seconds