Return to search

Développement et évaluation de poudres sèches pour inhalation à base d'itraconazole dans le cadre du traitement et de la prévention de l'aspergillose pulmonaire

Compte tenu de ses aspects multiples, de sa dangerosité potentielle et du taux de<p>survie considérablement bas qui lui est associé dans ses formes les plus graves, l’aspergillose<p>pulmonaire est encore à l’heure actuelle dévastatrice sur le plan clinique. L’approche<p>médicamenteuse conventionnelle consiste en l’administration par voie orale ou<p>intraveineuse (IV) d’agents antifongiques. Ces voies classiques requièrent l’administration de<p>doses très élevées qui sont nécessaires à l’obtention de concentrations systémiques<p>suffisantes pour obtenir un effet thérapeutique au niveau pulmonaire. Cependant, ces<p>concentrations systémiques sont également la cause d’effets secondaires indésirables et<p>d’interactions médicamenteuses importantes. Une alternative thérapeutique à ces voies<p>classiques serait de localiser ces antifongiques dans le poumon, en utilisant la voie inhalée.<p>Cela permettrait d’augmenter le taux de succès thérapeutique en déposant et en<p>concentrant directement la dose au niveau du site d’infection tout en minimisant les<p>concentrations systémiques.<p>Pour ce faire, nous avons choisi de développer des poudres sèches pour inhalation à<p>base d’itraconazole (ITZ), un antifongique actif à l’égard des souches d’aspergillus. Celles-ci<p>sont administrable via un inhalateur à poudre sèche pour les avantages que présente ce<p>mode d’administration comparativement aux nébuliseurs et aux inhalateurs pressurisés. Le<p>développement des formulations implique entre autres l’obtention de caractéristiques<p>aérodynamiques appropriées, c’est-à-dire, ayant, après décharge à partir d’un dispositif<p>d’inhalation, un profil de déposition pulmonaire permettant d’atteindre des doses<p>pulmonaires pharmacologiquement efficaces. Toutefois, l’ITZ présente une solubilité<p>aqueuse extrêmement faible (solubilité aqueuse à pH 7 ~ 4 ng/ml à 25°C). Or, une fois<p>déposée dans le poumon, la dose inhalée doit se solubiliser pour exercer son action<p>pharmacologique. Nous avons donc inclus dans les concepts de formulation, une stratégie<p>permettant l’amélioration du profil de dissolution et l’augmentation de la solubilité de l’ITZ.<p>Cela permettrait en effet d’en potentialiser au maximum l’action pharmacologique au sein<p>des lésions fongiques avant qu'il ne soit éliminé sous sa forme non dissoute par les<p>mécanismes de clairance non absorptifs du poumon. De plus, le poumon étant un organe ne<p>tolérant qu’un nombre limité de substances administrables par inhalation, nous nous<p>sommes focalisés sur l’utilisation d’excipients présentant un faible potentiel toxique ou bien<p>tolérés après inhalation. Enfin, nous avons gardé à l’esprit lors du développement des procédés de fabrication qu’ils pouvaient être sujets à la mise à l’échelle industrielle. Nous<p>avons donc privilégié des procédés de fabrication simples incluant des technologies<p>transposables telles que l’atomisation par la chaleur et l’homogénéisation à haute pression.<p>Une attention particulière lors de la caractérisation des poudres a été portée sur les<p>propriétés d’écoulement des formulations, toujours dans l’optique de faciliter une<p>potentielle future manutention à plus grande échelle.<p>Pour répondre à ces critères, durant la première partie de ce travail, nous avons<p>imaginé deux concepts de formulation qui ont pour but de former des microparticules de<p>mannitol dans lesquelles est dispersé l’ITZ sous forme « modifiée ».<p>Le premier concept de formulation qui a été développé consistait à former une<p>dispersion solide (DS) entre l’ITZ, si possible amorphe pour en augmenter la solubilité, et un<p>agent matriciel en utilisant le procédé d’atomisation par la chaleur d’une solution contenant<p>tous les ingrédients sous forme dissoute. Lors de tests préliminaires, nous avons évalué trois<p>types d’agents matriciels, deux agents hydrophiles (le mannitol et le lactose) et un agent<p>hydrophobe (le cholestérol). Sur base de la faisabilité, des résultats préliminaires de<p>solubilité, de dissolution et de déposition pulmonaire in vitro, le mannitol a été retenu.<p>Après une optimisation des conditions d’atomisation, les formulations ont été produites en<p>vue d’être caractérisées. Il a été observé, par diffraction de rayons X sur poudre (PXRD) et<p>par calorimétrie différentielle à balayage (DSC), qu’après atomisation, l’ITZ était obtenu sous<p>forme amorphe et le mannitol sous forme cristalline. Les tests d’évaluation des propriétés<p>aérodynamiques ont été réalisés à l’aide d’un impacteur liquide multi-étages (MsLI) en<p>suivant les recommandations pratiques de la Pharmacopée européenne. Ce type de<p>compositions, atomisées dans les conditions optimales, permettait d’obtenir des poudres<p>sèches présentant les caractéristiques de taille (diamètre médian < 5 μm, mesuré par<p>diffraction laser) et les propriétés aérodynamiques appropriées à l’administration<p>pulmonaire (fraction de particules fines (FPF) déterminées lors des tests d’impaction<p>comprises entre 40 % et 70 %). La formation d’une DS avec le mannitol était nécessaire afin<p>d’augmenter la solubilité et d’accélérer la cinétique de dissolution de l’ITZ comparativement<p>à son homologue micronisé sous forme cristalline ou encore à sa forme amorphe atomisée<p>sans mannitol. Par exemple, dans sa configuration amorphe atomisée sans excipient ou sous<p>sa forme cristalline initiale, l’ITZ présentait une solubilité à saturation (mesurée dans un tampon phosphate contenant 0,02% de dipalmytoyl phosphatidyl choline) inférieure à 10<p>ng/ml. Après formation d’une DS avec le mannitol suivant notre procédé de formulation,<p>nous sommes parvenus à des valeurs de solubilité atteignant 450 ng/ml. Il s’est avéré que<p>l’ajout à la composition d’un surfactant, le tocopherol polyethylène glycol 1000 succinate<p>(TPGS), permettait d’accélérer la cinétique de dissolution du principe actif. Toutefois,<p>l’utilisation du TPGS induisait une diminution des performances aérodynamiques des<p>formulations. Etant donné que cette augmentation de la cinétique de dissolution pouvait<p>être un avantage après administration pulmonaire, nous avons considéré un autre type de<p>surfactant, les phospholipides (PL). L’utilisation de la lécithine de soja hydrogéné s’est<p>révélée être très efficace. Les performances aérodynamiques des formulations ont été<p>préservées et même améliorées. Leur incorporation à la DS permettait également d’obtenir<p>une accélération du profil de dissolution de l’ITZ. De plus, l’augmentation de la quantité de<p>PL dans nos formulations, dans la gamme des concentrations utilisées, était corrélée avec<p>une amélioration d’autant plus marquée du profil de dissolution de l’ITZ. En outre, les<p>solubilités de l’ITZ en présence de PL furent considérablement améliorées avec, par<p>exemple, des concentrations mesurées de 870 ng/ml et 1342 ng/ml pour les formulations<p>contenant respectivement 10 % (m/mpoudre) et 35 % (m/mpoudre) d’ITZ, ainsi que 10 % de PL<p>exprimés par rapport à la quantité d’ITZ.<p>Le deuxième concept de formulation développé consistait à produire des<p>microparticules de mannitol dans lesquelles étaient dispersées des nanoparticules (NP)<p>cristallines d’ITZ. Le procédé de fabrication était le suivant. Une suspension de nanocristaux<p>d’ITZ produite par homogénéisation à haute pression (HPH) était re-suspendue dans une<p>solution de mannitol qui était par la suite atomisée pour obtenir les microparticules de<p>poudres sèches. Après optimisation des conditions d’homogénéisation, nous sommes<p>parvenus à produire des nanosuspensions d’ITZ dont les particules présentaient un diamètre<p>médian inférieur à 250 nm. Nous avons alors évalué l’influence qu’avait l’ajout du mannitol<p>et du taurocholate sodique sur l’état d’agrégation des NP avant l’étape d’atomisation et sur<p>les performances des formulations sous forme sèche. Il a été observé que l’ajout de<p>mannitol était nécessaire à la production de solutions sursaturées en ITZ avec une solubilité<p>maximale d’ITZ mesurées à 96 ng/ml dans le tampon phosphate précédemment cité. L’ajout<p>de mannitol s’est avéré nécessaire afin de minimiser le phénomène d’agrégation des NP durant l’étape d’atomisation. De plus, l’ajout de taurocholate de sodium permettait<p>également d’inhiber leur agrégation. La cristallinité des NP d’ITZ a été confirmée par PXRD et<p>DSC. Ce type de formulation présentait des tailles et des performances aérodynamiques<p>compatibles à l’administration pulmonaire (tailles des particules < 5 μm et FPF entre 35 % et<p>46 %). Néanmoins, comparativement aux DS précédemment décrites, ces formulations à<p>base de NP s’avèrent sensiblement moins performantes. En effet, au niveau des<p>caractéristiques aérodynamiques, les formulations à base de NP présentent des FPF<p>nettement inférieures à celles obtenues pour les DS (FPF de ~40 % pour les formulations<p>nanoparticulaires contre ~70 % pour les DS d’ITZ amorphe). De plus, à partir des<p>formulations à bases de NP, les taux de sursaturation en ITZ atteints étaient nettement<p>inférieurs à ceux obtenus avec les DS (~100 ng/ml Vs > 1000 ng/ml pour les meilleurs DS). En<p>outre, la production des nanosuspensions nécessitait l’étape supplémentaire d’un minimum<p>de 300 cycles d’homogénéisation, ce qui représente un désavantage considérable en termes<p>de rendement économique en cas de transposition à échelle industrielle comparativement à<p>l’étape unique nécessaire pour la fabrication des DS. Pour ces raisons, seules les DS ont été<p>évaluées in vivo.<p>Après la mise au point des formulations, la seconde partie de ce projet consistait à<p>évaluer les DS développés dans un système biologique complet, la souris. Nous avons en<p>premier lieu réalisé une pharmacocinétique (PK) après administration pulmonaire pour<p>déterminer l’effet de l’augmentation de la solubilité observée in vitro et de l’ajout de PL dans<p>la formulation. Ensuite, nous avons entrepris une étude d’activité sur un modèle murin<p>d’aspergillose pulmonaire invasive (API) permettant de comparer l’efficacité thérapeutique<p>ou prophylactique de nos formulations comparativement à une thérapie standard par voie<p>orale. Pour effectuer ces deux études, nous avons préalablement validé une méthode<p>d’administration des poudres sèches chez la souris à l’aide d’un insufflateur (DP-4M®, Penn<p>Century, Wyndmoor, USA) en utilisant la voie endotrachéale. Le premier point de cette<p>investigation avait pour objet de déterminer si l’intervalle de taille particulaire généré lors de<p>la décharge de nos formulations au sortir de l’insufflateur permettait une répartition<p>homogène dans les poumons ainsi qu’une pénétration profonde des particules jusqu’aux<p>alvéoles pulmonaires. Le deuxième point sur lequel nous nous sommes également attardés était la reproductibilité des doses pulmonaires générées après insufflation, facteur<p>déterminant lors de la réalisation d’une étude PK.<p>Sur base des observations constatées durant la validation du dispositif<p>d’administration, nous avons entrepris une étude PK après administration pulmonaire d’une<p>dose de 0,5 mg/kg d’ITZ, représentant une quantité inhalable par l’homme et pouvant<p>garantir des taux pulmonaires en antifongiques théoriquement adéquats. Cette étude a<p>permis de comparer les concentrations pulmonaires et plasmatiques en ITZ après<p>l’administration de poudres sèches à base d’une DS de mannitol et d’ITZ qui était soit<p>cristallin soit amorphe, avec ou sans PL. Après administration de la DS à base d’ITZ sous sa<p>forme amorphe, une augmentation de la quantité d’ITZ absorbée vers le compartiment<p>systémique a été observée. En effet, il a été observé une augmentation d’un facteur 2,7 de<p>l’aire sous la courbe des concentrations plasmatiques en ITZ de 0 à 24 heures (AUC0-24h)<p>comparativement à celle obtenue après administration de la DS à base d’ITZ sous sa forme<p>cristalline. Le temps pour atteindre la concentration plasmatique maximale (tmax) était<p>également plus court pour la formulation à base ITZ sous sa forme amorphe (tmax de 10 min<p>vs 30 min pour la formulation cristalline). De plus, dans cette configuration amorphe, les<p>temps de rétention pulmonaire en ITZ étaient considérablement plus élevés (t1/2<p>d’élimination de 6,5 h pour l'ITZ cristallin vs 14 ,7 h pour l’ITZ amorphe) permettant de<p>maintenir une concentration pulmonaire en ITZ supérieure à la CMI de la souche<p>d’aspergillus la plus fréquente (A. fumigatus ;2 μg/gpoumon) pendant plus de 24h. L’ajout de<p>PL dans un rapport ITZ:PL:mannitol (1:3:97) dans la DS influençait le profil PK de l’ITZ<p>amorphe en accentuant et accélérant d’avantage la phase d’absorption initiale de l’ITZ<p>observée (Cmax et tmax plasmatique supérieur et inférieur à ceux obtenus pour l’ITZ amorphe,<p>respectivement). Toutefois, cette formulation a été éliminée plus rapidement des poumons<p>(t1/2 d’élimination pulmonaire de l’ITZ de 4,1h pour les formulations avec PL vs 14,7h sans<p>PL). Pour cette raison, nous avons décidé d’évaluer l’efficacité des formulations à base d’ITZ<p>sous forme amorphe sans phospholipides dans un modèle murin d’aspergillose pulmonaire<p>invasive (API) que nous avons développé.<p>Nous ne sommes pas parvenus à mettre en évidence un effet thérapeutique de<p>l’administration des poudres sèches administrées dans ce modèle murin neutropénique<p>d’API. Nous justifions ce manque d’activité par une agressivité du modèle trop prononcée et par l’impossibilité de pouvoir administrer de manière plus fréquente le traitement par<p>inhalation en raison de l’anesthésie nécessaire pour la procédure d’administration<p>endotrachéale. Toutefois, des essais complémentaires vont être envisagés (modification de<p>la charge fongique, administration des poudres par une tour d’inhalation, optimisation du<p>dosage et de la fréquence d’administration). En revanche, il a été mis en évidence que<p>l’administration prophylactique (début des administrations 2 jours avant l’infection) d’une<p>dose de 5 mg/kg/48h d’une DS d’ITZ amorphe augmentait significativement le taux de survie<p>de 12 jours après l’infection par A. fumigatus comparativement aux animaux non traités<p>(taux de survivants :50 % vs 0 %). A titre de comparaison, le pourcentage de survie obtenu<p>après prophylaxie quotidienne d’une dose de 12,5 mg/kg/12h de solution orale de VCZ (la<p>thérapie recommandée pour l’API) n’était que de 25 %.<p>En conclusion, les DS d’ITZ destinées à être administrées par inhalation constituent<p>une approche thérapeutique prometteuse dans le cadre de la prévention et du traitement<p>de l’aspergillose pulmonaire. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209499
Date19 April 2013
CreatorsDuret, Christophe
ContributorsAmighi, Karim, Wauthoz, Nathalie, Neve, Jean, Langer, Ingrid, Tsapis, Nicolas, Vanderbist, Francis, Flament, Marie-Pierre, Fontaine, Véronique
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté de Pharmacie, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageFrench
Detected LanguageFrench
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format2 full-text file(s): application/pdf | application/pdf
Rights2 full-text file(s): info:eu-repo/semantics/openAccess | info:eu-repo/semantics/restrictedAccess

Page generated in 0.003 seconds