Die Untersuchung kausaler Zusammenhänge in komplexen dynamischen Systemen spielt in der Wissenschaft eine immer wichtigere Rolle. Ziel dieses aktuellen, interdisziplinären Forschungsbereiches ist ein grundlegendes, tiefes Verständnis der vorherrschenden Prozesse und deren Wechselwirkungen in solchen Systemen. Die Untersuchung von Zeitreihen mithilfe moderner Kopplungsanalysemethoden liefert dabei Möglichkeiten zur Modellierung der betreffenden Systeme und somit bessere Vorhersagemethoden und fortgeschrittene Interpretationsmöglichkeiten der Ergebnisse. In der vorliegenden Arbeit werden zunächst einige existierende Kopplungsmaße mit ihren jeweiligen Anwendungsgebieten vorgestellt. Eine Gemeinsamkeit dieser Maße liegt in der Voraussetzung stationärer Zeitreihen, um die Anwendbarkeit zu gewährleisten. Daher wird im Verlauf der Dissertation eine Möglichkeit zur Erweiterung solcher Maße vorgestellt, die eine Kopplungsanalyse mit einer sehr hohen Zeitauflösung und somit auch die Untersuchung nichtstationärer, transienter Ereignisse ermöglicht. Die Erweiterung basiert auf der Verwendung von Ensembles von Messreihen und der Schätzung der jeweiligen Maße über das Ensemble anstatt über die Zeit. Dies ermöglicht eine Zeitauflösung bei der Analyse in der Größenordnung der Abtastrate des ursprünglichen Signals, die nur von der Art der verwendeten Kopplungsmaße abhängt. Der Ensemble-Ansatz wird auf verschiedene Kopplungsmaße angewandt. Zunächst werden die Methoden ausführlich an verschiedenen theoretischen Modellen und unter verschiedenen Bedingungen getestet. Anschließend erfolgt eine zeitaufgelöste Kopplungsanalyse kardiovaskulärer Zeitreihen, die während transienter Ereignisse aufgenommen wurden. Die Ergebnisse dieser Analyse bestätigen zum einen aktuelle Studienresultate, liefern aber auch neue Erkenntnisse, die es in Zukunft ermöglichen können, Modelle des Herz-Kreislauf-Systems zu erweitern und zu verbessern. / The analysis of causal relationships in complex dynamic systems plays a more and more important role in various scientific fields. The aim of this current, interdisciplinary field of research is a fundamental, deep understanding of predominant processes and their interactions in such systems. The study of time series using modern coupling analysis tools allows the modelling of the respective systems and thus better prediction methods and advanced interpretation possibilities for the results. In this work, initially some existing coupling measures and their fields of application are introduced. One trait these measures have in common is the requirement of stationary time series to ensure their applicability. Therefore, in the course of this thesis a possibility to extend these measures is presented, which allows a coupling analysis with a high temporal resolution and thus also the analysis of transient, nonstationary events. The extension is based on the use of ensembles of time series and the calculation of the respective measures across these ensembles instead of across time. This allows for a temporal resolution of the same order of magnitude as the sampling rate in the original signal. The resolution only depends on the kind of coupling analysis method employed. The ensemble extension is applied to different coupling measures. To begin with, the regarded tools are tested on various theoretical models and under different conditions. This is followed by a coupling analysis of cardiovascular time series recorded during transient events. The results on the one hand confirm topical study outcomes and on the other hand deliver new insights, which will allow to extend and improve cardiovascular system models in the future.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18104 |
Date | 09 March 2016 |
Creators | Müller, Andreas |
Contributors | Kurths, Jürgen, Penzel, Thomas, Baumert, Mathias |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.002 seconds