Return to search

Modelling Financial and Social Networks

In dieser Arbeit untersuchen wir einige Möglichkeiten, financial und soziale Netzwerke zu analysieren, ein Thema, das in letzter Zeit in der ökonometrischen Literatur große Beachtung gefunden hat.
Kapitel 2 untersucht den Risiko-Spillover-Effekt über das in White et al. (2015) eingeführte multivariate bedingtes autoregressives Value-at-Risk-Modell. Wir sind an der Anwendung auf nicht stationäre Zeitreihen interessiert und entwickeln einen sequentiellen statistischen Test, welcher das größte verfügbare Homogenitätsintervall auswählt. Unser Ansatz basiert auf der Changepoint-Teststatistik und wir verwenden einen neuartigen Multiplier Bootstrap Ansatz zur Bewertung der kritischen Werte.
In Kapitel 3 konzentrieren wir uns auf soziale Netzwerke. Wir modellieren Interaktionen zwischen Benutzern durch ein Vektor-Autoregressivmodell, das Zhu et al. (2017) folgt. Um für die hohe Dimensionalität kontrollieren, betrachten wir ein Netzwerk, das einerseits von Influencers und Andererseits von Communities gesteuert wird, was uns hilft, den autoregressiven Operator selbst dann abzuschätzen, wenn die Anzahl der aktiven Parameter kleiner als die Stichprobegröße ist.
Kapitel 4 befasst sich mit technischen Tools für die Schätzung des Kovarianzmatrix und Kreuzkovarianzmatrix. Wir entwickeln eine neue Version von der Hanson-Wright- Ungleichung für einen Zufallsvektor mit subgaußschen Komponenten. Ausgehend von unseren Ergebnissen zeigen wir eine Version der dimensionslosen Bernstein-Ungleichung, die für Zufallsmatrizen mit einer subexponentiellen Spektralnorm gilt. Wir wenden diese Ungleichung auf das Problem der Schätzung der Kovarianzmatrix mit fehlenden Beobachtungen an und beweisen eine verbesserte Version des früheren Ergebnisses von (Lounici 2014). / In this work we explore some ways of studying financial and social networks, a topic that has recently received tremendous amount of attention in the Econometric literature.
Chapter 2 studies risk spillover effect via Multivariate Conditional Autoregressive Value at Risk model introduced in White et al. (2015). We are particularly interested in application to non-stationary time series and develop a sequential test procedure that chooses the largest available interval of homogeneity. Our approach is based on change point test statistics and we use a novel Multiplier Bootstrap approach for the evaluation of critical values.
In Chapter 3 we aim at social networks. We model interactions between users through a vector autoregressive model, following Zhu et al. (2017). To cope with high dimensionality we consider a network that is driven by influencers on one side, and communities on the other, which helps us to estimate the autoregressive operator even when the number of active parameters is smaller than the sample size.
Chapter 4 is devoted to technical tools related to covariance cross-covariance estimation. We derive uniform versions of the Hanson-Wright inequality for a random vector with independent subgaussian components. The core technique is based on the entropy method combined with truncations of both gradients of functions of interest and of the coordinates itself. We provide several applications of our techniques: we establish a version of the standard Hanson-Wright inequality, which is tighter in some regimes. Extending our results we show a version of the dimension-free matrix Bernstein inequality that holds for random matrices with a subexponential spectral norm. We apply the derived inequality to the problem of covariance estimation with missing observations and prove an improved high probability version of the recent result of Lounici (2014).

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/21313
Date04 October 2019
CreatorsKlochkov, Yegor
ContributorsHärdle, Wolfgang Karl, Spokoiny, Vladimir
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschland, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0025 seconds