Return to search

Copolymères à grande largeur de bande interdite contenant des quinoxalines : nouveaux matériaux pour les cellules solaires organiques à hétérojonction / High band gap copolymers based on quinoxaline units : new materials for the heterojunction organic solar cells

Une alternative aux énergies fossiles est le domaine du photovoltaïque organique qui a récemment commencé son transfert technologique des laboratoires de recherche vers l’industrie. De nombreux efforts de recherche sont réalisés sur les matériaux et les procédés pour augmenter les performances des cellules solaires organiques. Dans ce contexte, ce travail présente une étude complète allant de la conception de nouveaux polymères donneurs d’électrons à grande largeur de bande interdite à leur caractérisation en dispositifs photovoltaïques. La principale caractéristique recherchée a été de diminuer le niveau énergétique HOMO des polymères pour augmenter la tension en circuit ouvert des dispositifs photovoltaïques. L’approche « donneur-accepteur » a été utilisée pour obtenir les propriétés désirées. Des polymères comportant des unités pauvres en électrons, quinoxaline ou dithienoquinoxaline, et des unités riches en électrons, dibenzosilole ou carbazole, ont été synthétisés par couplage de Suzuki ou par hétéroarylation directe. Des masses molaires allant jusqu’à 56 kg.mol-1 ont été obtenues. Le motif quinoxaline a été décliné sous forme de plusieurs molécules substituées par des atomes de fluor sur le benzène ou par des groupements thiophènes, bithiophènes et terthiophènes sur la partie pyrazine. Des espaceurs thiophènes ou thiazoles ont été utilisés pour relier l’unité riche en électrons et l’unité pauvre en électrons. Les relations entre les modifications structurales et les propriétés structurales et optoélectroniques des polymères ont été analysées. Les propriétés optiques ont été étudiées par spectroscopie UV-visible et par spectroscopie de fluorescence et ont montré une absorption allant jusqu’à 550 nm pour les polymères à motifs dithienoquinoxaline-dibenzosilole, 650 nm pour les polymères à motifs quinoxaline-dibenzosilole et 700 nm pour la famille quinoxaline-carbazole. Ces valeurs correspondent à des largeurs de bande interdite comprises entre 1,8 eV et 2,3 eV. Les niveaux énergétiques HOMO et LUMO des polymères ont été déterminés par électrochimie. Tous les polymères possèdent des niveaux énergétiques HOMO inférieurs à -5,0 eV. Les atomes de fluor et les espaceurs thiazoles ont permis d’abaisser les niveaux énergétiques HOMO des polymères jusqu’à -5,69 eV. Les structures des polymères ont été modélisées par DFT et étudiées par diffraction des rayons X. Les mobilités des trous des polymères ont été mesurées en transistor organique à effet de champ, des valeurs atteignant 9,0. 10 3 cm.V 1.s 1 ont été atteintes. Les polymères ont été testés en dispositifs photovoltaïques selon une architecture standard à hétérojonction volumique en mélange binaire et en mélange ternaire. En mélange avec le PC71BM ou l’IC61BA, ces polymères ont permis d’atteindre des tensions en circuit ouvert entre 0,65 V et 1,05 V et des rendements de conversion photovoltaïque jusqu’à 5,14 % sur une surface active de 0,28 cm2. Les morphologies des couches actives ont été étudiées par AFM afin de comprendre en détail les paramètres de fonctionnement des cellules obtenues. Les polymères présentés dans cette étude ont été utilisés dans des cellules solaires à mélange ternaire présentant de bonnes performances. Certains polymères ont été testés dans des photocathodes pour la production d’hydrogène et ont permis d’obtenir une amélioration du potentiel de réduction par rapport à celui obtenu avec les photocathodes à base de P3HT. Enfin, compte tenu de leurs propriétés optoélectroniques et de leurs performances photovoltaïques certains de ces polymères devraient pouvoir être employés de manière avantageuse en sous cellules de dispositifs tandem en remplacement du P3HT par exemple. / An alternative to fossil fuels are the organic photovoltaic cells which have recently started their technological transfer from research laboratories to industry. Many research efforts have been made on the modification of materials and processes to increase the performance of organic solar cells. In this context, this work presents a comprehensive study from the design of new electron-donor high band gap polymers to their characterisation in photovoltaic devices. The main requirement was to decrease the HOMO energy level of the polymers in order to increase the open circuit voltage of the solar cells. The "push-pull" approach was used to obtain the desired properties. Polymers with quinoxaline or dithienoquinoxaline as electron-deficient units and dibenzosilole or carbazole as electron-rich units were synthesized by Suzuki coupling or by direct heteroarylation. Molecular weights up to 56 kg.mol 1 were obtained. The electron-withdrawing unit quinoxaline was substituted by fluorine atoms on the benzene moiety and by thiophene, bithiophene and terthiophene group on the pyrazine moiety. Thiophenes or thiazoles were used as spacers to link the electron-donating and the electron-withdrawing units. The relationship between the structural modification of the polymers and their optoelectronic properties were analysed. The optical properties were studied by UV-visible spectroscopy and fluorescence spectroscopy. Whereby it appears that polymers with dithienoquinoxaline-dibenzosilole units showed an absorption up to 550 nm and polymers with both quinoxaline-dibenzosilole units and quinoxaline-carbazole units showed an absorption up to 650-700 nm respectively. The corresponding optical band gaps were found to range from 1.8 eV to 2.3 eV. The HOMO and LUMO energy levels of the polymers were determined by electrochemistry. All polymers exhibited HOMO energy levels below -5.0 eV. Fluorine atoms and thiazole spacers significantly lowered the HOMO energy levels of the polymers up to -5.69 eV. DFT was used to model the polymer structures. X-ray diffraction was used to analyse the distances between the polymer chains. Hole mobilities were measured in organic field effect transistors and values of up to 9.0 x 10 3 cm2.V-1.s-1 were obtained. The polymers were tested in organic photovoltaic devices according to a standard bulk heterojunction structure in binary and ternary mixtures. In a blend with PC71BM or IC61BA, these polymers have led to open circuit voltages ranging from 0.65 V to 1.05 V and to power conversion efficiencies of up to 5.14 % on a surface area of 0.28 cm2. The active layer morphologies were studied by AFM. The polymers presented in this work were used in ternary blend solar cells. Some polymers were tested in photocathodes for hydrogen evolution and showed an improvement of the reduction potential compared to that of the photocathodes based on P3HT. Owing to their optoelectronic properties and their photovoltaic properties in standard device configurations, some of the materials developed in this study appear as valuable materials for future developments of organic tandem solar cells.

Identiferoai:union.ndltd.org:theses.fr/2016GREAV021
Date30 March 2016
CreatorsCaffy, Florent
ContributorsGrenoble Alpes, Travers, Jean-Pierre, Demadrille, Renaud
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds