Ein fragment-basierter Ansatz zur Berechnung von vertikalen Anregungsenergien in
periodischen Systemen wurde entwickelt. Das Ziel war eine wellenfunktions-basierte
Hierarchie von lokalen post-Hartree-Fock Methoden, welche über das weitverbreitete
Ein-Elektronen Bild der Bandlücke hinausgehen und eine Möglichkeit zur
systematischen Verbesserung der Ergebnisse liefern. Darüber hinaus sollte durch
die Verwendung von lokalen Orbitalen eine nahtlose Einbettung des Fragments
ermöglicht und eine effektive Methode für die Untersuchung von Defekten in periodischen
Systemen geschaffen werden. Als erster Schritt wird das fragment-basierte
Configuration Interaction Singles (CIS) Model vorgestellt. Im Anschluss erfolgt
der Wechsel zum fragment-basierten lokalen algebraic-diagrammatic construction
Modells zweiter Ordnung (DF-LADC(2)). Beide Methoden wurden für ein neutrales
Farbzentrum in Magnesiumoxid (MgO) getestet. Dabei wurden Fragmente mit bis
zu 57 Atomen verwendet. Eine Konvergenz mit der Fragmentgröße, der Größe
der Superzellen und des K-mesh konnte erreicht werden. Dennoch wurde eine erste
Anregungsenergie von 5.9 eV erhalten, was 0.9 eV über dem veröffentlichten
experimentellen Wert liegt. Mit hoher Wahrscheinlichkeit rührt die Abweichung
vom Basissatzvollständigkeitsfehler her. ”Finite-Cluster”-Berechnungen bestätigen
entsprechende Basissatzfehler. Interessanterweise stimmt die erste Anregungsenergie
für ein Oberflächenfarbzentrum in MgO mit einigen experimentellen Werten
überein. Allerdings decken die experimentellen Werte für diese Systeme einen weiten
Bereich ab (1.15 - 4.2 eV). / An embedded-fragment approach for calculation of vertical excitation energies in
periodic systems has been developed. The aim is a wave-function-based hierarchy of
local post-Hartree-Fock models, which goes beyond the very common one-electron
picture of the band gap and offers a way for systematic improvability of the results.
The use of local occupied and virtual orbitals allows for a seamless embedding model
for the fragment and becomes especially effective in studying defects in solids. As a
first step in the hierarchy an embedded-fragment Configuration Interaction Singles
(CIS) model is presented. The second step is an embedded-fragment local algebraic diagrammatic construction scheme of second order (DF-LADC(2)). Both methods
are tested for an neutral color center in bulk and surface magnesium oxide (MgO).
Different fragments with up to 57 atoms were studied. A convergence with fragment
size, super-cell size and k-mesh has been achieved. However a first excitation energy
of 5.9 eV is obtained for the bulk MgO, which is 0.9 eV above the reported experimental
value. The deviation most likely originates from the basis set incompleteness
error, which, according to finite cluster studies, can be sizable. Interestingly for a
surface color center in MgO the observed first excitation energy of 4.1 eV agrees
with some of the experimental values (4.2 eV). However for the surface color centers
in MgO the scatter of the experimental results is very large (1.15 eV - 4.2 eV).
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/27642 |
Date | 12 July 2023 |
Creators | Flach, Ernst-Christian |
Contributors | Usvyat, Denis, Maschio, Lorenzo, Römelt, Michael |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0024 seconds