Return to search

Contribution à l'étude des transferts de matière gaz-liquide en présence de réactions chimiques / Contribution to the gas-liquid mass transfer study coupled with chemical reactions

Le bicarbonate de soude raffiné, produit industriellement par la société Solvay, est fabriqué dans des colonnes à bulles de grande taille, appelées les colonnes BIR.<p>Dans ces colonnes, une phase gazeuse contenant un mélange d’air et dioxyde de carbone (CO2) est dispersée sous forme de bulles dans une solution aqueuse de carbonate et de bicarbonate de sodium (respectivement Na2CO3 et NaHCO3). Cette dispersion donne lieu à un transfert de CO2 des bulles vers la phase liquide. Au sein des colonnes, la phase gazeuse se répartit dans deux populations de bulles :des petites bulles (diamètre de quelques mm) et des grandes bulles (diamètre de quelques cm). Le transfert bulle-liquide de CO2 est couplé à des réactions chimiques prenant place en phase liquide, qui conduisent à la conversion du Na2CO3 en NaHCO3. Une fois la concentration de saturation dépassée le NaHCO3 précipite sous forme de cristaux et un mélange liquide-solide est recueilli à la sortie de ces colonnes.<p>Ce travail, réalisé en collaboration avec la société Solvay, porte sur l’étude et la modélisation mathématique des phénomènes de transfert de matière entre phases, couplés à des réactions chimiques, prenant place au sein d’une colonne BIR. L’association d’études sur des colonnes à bulles à l’échelle industrielle ou réduite (pilote) et d’études plus fondamentales sur des dispositifs de laboratoire permet de développer une meilleure compréhension du fonctionnement des colonnes BIR et d’en construire un modèle mathématique détaillé.<p>L’objectif appliqué de ce travail est la mise au point d’un modèle mathématique complet et opérationnel d’une colonne BIR. Cet objectif est supporté par trois blocs de travail, dans lesquels différents outils sont développés et exploités.<p><p>Le premier bloc est consacré à la modélisation mathématique du transfert bulle-liquide de CO2 dans une solution aqueuse de NaHCO3 et de Na2CO3. Ce transfert est couplé à des réactions chimiques en phase liquide qui influencent sa vitesse. Dans un premier temps, des modèles sont développés selon des approches unidimensionnelles classiquement rencontrées dans la littérature. Ces approches passent par une idéalisation de l’écoulement du liquide autour des bulles. Une expression simplifiée de la vitesse du transfert bulle-liquide de CO2, est également développée et validée pour le modèle de colonne BIR.<p>Dans un second temps, une modélisation complète des phénomènes de transport (convection et diffusion), couplés à des réactions chimiques, est réalisée en suivant une approche bidimensionnelle axisymétrique. L’influence de la vitesse de réactions sur la vitesse de transfert est étudiée et les résultats des deux approches sont également comparés.<p><p>Le deuxième bloc est consacré à l’étude expérimentale du transfert gaz-liquide de CO2 dans des solutions aqueuses de NaHCO3 et de Na2CO3. A cette fin, un dispositif expérimental est développé et présenté. Du CO2 est mis en contact avec des solutions aqueuses de NaHCO3 et de Na2CO3 dans une cellule transparente. Les phénomènes provoqués en phase liquide par le transfert de CO2 sont observés à l’aide d’un interféromètre de Mach-Zehnder.<p>Les résultats expérimentaux sont comparés à des résultats de simulation obtenus avec un des modèles unidimensionnels développés dans le premier bloc. De cette comparaison, il apparaît qu’une mauvaise estimation de la valeur de certains paramètres physico-chimiques apparaissant dans les équations de ce modèle conduit à des écarts significatifs entre les grandeurs observées expérimentalement et les grandeurs estimées par simulation des équations du modèle.<p>C’est pourquoi une méthode d’estimation paramétrique est également développée afin d’identifier les valeurs numériques de ces paramètres physico-chimiques sur base des résultats expérimentaux. Ces dernières sont également discutées.<p><p>Dans le troisième bloc, nous apportons une contribution à l’étude des cinétiques de précipitation du NaHCO3 dans un cristallisoir à cuve agitée. Cette partie du travail est réalisée en collaboration avec Vanessa Gutierrez (du service Matières et Matériaux de l’ULB).<p>Nous contribuons à cette étude par le développement de trois outils :une table de calcul Excel permettant de synthétiser les résultats expérimentaux, un ensemble de simulations de l’écoulement au sein du cristallisoir par mécanique des fluides numérique et une nouvelle méthode d’extraction des cinétiques de précipitation du NaHCO3 à partir des résultats expérimentaux. Ces trois outils sont également utilisés de façon combinée pour estimer les influences de la fraction massique de solide et de l’agitation sur la cinétique de germination secondaire du NaHCO3.<p><p>Enfin, la synthèse de l’ensemble des résultats de ces études est réalisée. Le résultat final est le développement d’un modèle mathématique complet et opérationnel des colonnes BIR. Ce modèle est développé en suivant l’approche de modélisation en compartiments, développée au cours du travail de Benoît Haut. Ce modèle synthétise les trois blocs d’études réalisées dans ce travail, ainsi que les travaux d’Aurélie Larcy (du service Transferts, Interfaces et Procédés de l’ULB) et de Vanessa Gutierrez. Les équations modélisant les différents phénomènes sont présentées, ainsi que la méthode utilisée pour résoudre ces équations. Des simulations des équations du modèle sont réalisées et discutées. Les résultats de simulation sont également comparés à des mesures effectuées sur une colonne BIR. Un accord raisonnable est observé.<p>A l’issue de ce travail, nous disposons donc d’un modèle opérationnel de colonne BIR. Bien que ce modèle doive encore être optimisé et validé, il peut déjà être utilisé pour étudier l’effet des caractéristiques géométriques des colonnes BIR et des conditions appliquées à ces colonnes sur le comportement des simulations des équations du modèle et pour identifier des tendances.<p>//<p>The refined sodium bicarbonate is produced by the Solvay company using large size bubble columns, called the BIR columns.<p>In these columns, a gaseous phase containing an air-carbon dioxyde mixture (CO2) is dispersed under the form of bubbles in an aqueous solution of sodium carbonate and sodium bicarbonate (Na2CO3 and NaHCO3, respectively). This dispersion leads to a CO2 transfer from the bubbles to the liquid phase. Inside these columns, the gaseous phase is distributed in two bubbles populations :small bubbles (a few mm of diameter) and large bubbles (a few cm of diameter).<p>The bubble-liquid CO2 transfer is coupled with chemical reactions taking places in the liquid phase that leads to the conversion of Na2CO3 to NaHCO3. When the solution is supersaturated in NaHCO3, the NaHCO3 precipitates under the form of crystals and a liquid-solid mixture is extracted at the outlet of the BIR columns.<p>This work, realized in collaboration with Solvay, aims to study and to model mathematically the mass transport phenomena between the phases, coupled with chemical reactions, taking places inside a BIR column. Study of bubble columns at the industrial and the pilot scale is combined to a more fundamental study at laboratory scale to improve the understanding of the BIR columns functioning and to develop a detailed mathematical modeling.<p>The applied objective of this work is to develop a complete and operational mathematical modeling of a BIR column. This objective is supported by three blocks of work. In each block, several tools are developed and used.<p><p>The first block is devoted to the mathematical modeling of the bubble-liquid CO2 transfer in an NaHCO3 and Na2CO3 aqueous solution. This transfer is coupled with chemical reactions in liquid phase, which affect the transfer rate.<p>In a first time, mathematical models are developed following the classical one-dimensional approaches of the literature. These approaches idealize the liquid flow around the bubbles. A simplified expression of the bubble-liquid CO2 transfer rate is equally developed and validated for the BIR column model.<p>In a second time, a complete modeling of the transport phenomena (convection and diffusion) coupled with chemical reactions is developed, following an axisymmetrical twodimensional approach. The chemical reaction rate influence on the bubble-liquid transfer rate is studied and the results of the two approaches are then compared.<p><p>The second block is devoted to the experimental study of the gas-liquid CO2 transfer to NaHCO3 and Na2CO3 aqueous solutions. An experimental set-up is developed and presented. CO2 is put in contact with NaHCO3 and Na2CO3 aqueous solutions in a transparent cell. The phenomena induced in liquid phase by the CO2 transfer are observed using a Mach-Zehnder interferometer.<p>The experimental results are compared to simulation results that are obtained using one of the one-dimensional model developed in the first block. From this comparison, it appears that a wrong estimation of some physico-chemical parameter values leads to significative differences between the experimentally observed quantities and those estimated by simulation of the model equations. Therefore, a parametric estimation method is developed in order to estimate those parameters numerical values from the experimental results. The found values are then discussed.<p><p>In the third block is presented a contribution to the NaHCO3 precipitation kinetic study in a stirred-tank crystallizer. This part of the work is realized in collaboration with Vanessa Gutierrez (Chemicals and Materials Department of ULB).<p>Three tools are developed :tables in Excel sheet to synthetize the experimental results, a set of simulations of the flow inside the crystallizer by Computational Fluid Dynamic (CFD) and a new method to extract the NaHCO3 precipitation kinetics from the experimental measurements. These three tools are combined to estimate the influences of the solid mass fraction and the flow on the NaHCO3 secondary nucleation rate.<p><p>Finally, the synthesis of all these results is realized. The final result is the development of a complete and operational mathematical model of BIR columns. This model is developed following the compartmental modeling approach, developed in the PhD thesis of Benoît Haut. This model synthetizes the three block of study realized in this work and the studies of Aurélie Larcy (Transfers, Interfaces and Processes Department of ULB) and those of Vanessa Gutierrez. The equations modeling the phenomena taking place in a BIR column are presented as the used method to solve these equations. The equations of the model are simulated and the results are discussed. The results are equally compared to experimental measurement realized on a BIR column. A reasonable agreement is observed.<p>At the end of this work, an operational model of a BIR column is thus developed. Although this model have to be optimized and validated, it can already be used to study the influences of the geometrical characteristics of the BIR columns and of the conditions applied to these columns on the behaviour of the model equation simulations and to identity tendencies. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/210257
Date29 September 2009
CreatorsWylock, Christophe
ContributorsHaut, Benoît, Delplancke, Marie-Paule, Thomas, Diane, Crine, Michel, Colinet, Pierre, Bogaerts, Philippe, Cartage, Thierry
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté des sciences appliquées – Chimie, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageFrench
Detected LanguageFrench
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format1 v. (174 p.), No full-text files

Page generated in 0.1127 seconds