Particle accelerators are a leading tool for frontier science. Pushing that frontier further demands more machines with higher performance, and more of a very expensive technology: superconducting radio-frequency (SRF) acceleration. From a materials perspective this means reducing residual surface resistance or raising the operating temperature (currently ~2 K) of SRF cavities. Both are pursued by materials modification: nitrogen doping/infusion in the first instance and coating with Nb3Sn in the second. Materials characterization is key to achieving understanding and directing RandD. However, very little has been done. This present work aims to fill the knowledge gap and to provide needed, validated tools to the accelerator science community. In this connection, SIMS, XPS and EBSD have proven especially valuable and represent the majority of discussion in this dissertation. / Doctor of Philosophy / Particle accelerators are a powerful tool that helps us expand our knowledge of science and how the universe works. Pushing that knowledge further requires us to use more and more powerful particle accelerators. Particle accelerators are based on a very expensive technology: superconducting radio-frequency (SRF) cavities. These cavities are hollow tubes made from niobium and shaped in such a way as to cause electromagnetic waves to form. These waves are what are used to accelerate particles. The energy input and loss of energy as heat are massive resulting in millions of dollars a year in electric bills at particle accelerator facilities. In order to build bigger and more powerful particle accelerates they most be more efficient or they become prohibitively expensive. In this dissertation I look at several next generation materials used in building particle accelerators. In particular I describe and go into detail about how to characterize these materials. In other words, how we determine the materials properties and how those properties affect the performance.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/90574 |
Date | 24 June 2019 |
Creators | Tuggle, James Robert Jr. |
Contributors | Materials Science and Engineering, Kelley, Michael J., Reynolds, William T. Jr., Aning, Alexander O., Stevie, Fred A., Reece, Charles E. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds