• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 14
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of optimised electromagnetic fields in SRF cavities for the ILC

Juntong, Nawin January 2012 (has links)
The International Linear Collider (ILC) project aims at colliding electrons and positrons at an initial centre of mass energy of 500 GeV with high luminosity, and thus will allow scientists to probe new energy regimes. A general consensus within the accelerator physics and particle physics community has been made to utilise superconducting technology rather than normal conducting technology. A superconducting radio frequency (SRF) cavity will be used to accelerate bunches of particles to the design energy before delivering them to an interaction point. The major financial cost of the ILC lies in the area of the main linacs. These linacs consist of nine-cell cavities and are based on the TESLA design. An option being considered to reduce the overall footprint and project cost is to enhance the cavity gradient. This research concerns itself with my new cavity design with a view to reaching higher gradients. This design is focussed on minimising the surface electromagnetic fields and maximising the bandwidth of the accelerating mode. This new shape, which is referred to as the New Low Surface Field (NLSF) design, bears a similarity to the current Ichiro and Reentrant designs. A design of a complete nine-cell cavity, including power couplers and higher order mode damping couplers is presented. An equivalent circuit model theory is applied to represent the radio frequency (rf) mode properties of the cavity for both the fundamental accelerating mode and higher order modes. This represents an almost complete design, including HOM damping, for a unique high gradient superconducting cavity.
2

Experimental and Numerical Analysis of Hydroformed Tubular Materials for Superconducting Radio Frequency (SRF) Cavities

Kim, Hyun Sung 31 August 2016 (has links)
No description available.
3

Emittance Compensation for SRF Photoinjectors

Vennekate, Hannes 20 September 2017 (has links) (PDF)
The advantages of contemporary particle injectors are high bunch charges and good beam quality in the case of normal conducting RF guns and increased repetition rates in the one of DC injectors. The technological edge of the concept of superconducting radio frequency injectors is to combine the strengths of both these sides. As many future accelerator concepts, such as energy recovery linacs, high power free electron lasers and certain collider designs, demand particle sources with high bunch charges and high repetition rates combined, applying the superconductivity of the accelerator modules to the injector itself is the next logical step. However, emittance compensation — the cornerstone for high beam quality — in case of a superconducting injector is much more challenging than in the normal conducting one. The use of simple electromagnets generating a solenoid field around the gun’s resonator interferes with its superconducting state. Hence, it requires novel and sophisticated techniques to maintain the high energy gain inside the gun cavity, while at the same time alleviating the detrimental fast transverse emittance growth of the bunch. In the case of the ELBE accelerator at the Helmholtz-Zentrum Dresden-Rossendorf, a superconducting electron accelerator provides beam for several independent beamlines in continuous wave mode. The applications include IR to THz free electron lasers, neutron and positron generation, to Thompson backscattering with an inhouse TW laser, and hence, call for a flexible CW injector. Therefore, the development of a 3.5 cell superconducting electron gun was initiated in 1997. The focus of this thesis lies on three approaches of transverse emittance compensation for this photoinjector: RF focusing, the installation of a superconducting solenoid close to the cavity’s exit, and the introduction of a transverse electrical mode of the RF field in the resonator. All three methods are described in theory, examined by numerical simulation, and experimentally reviewed in the particular case of the ELBE SRF Gun II at HZDR and a copy of its niobium resonator at Thomas Jefferson National Laboratory, Newport News, VA, USA.
4

Emittance Compensation for SRF Photoinjectors

Vennekate, Hannes 21 September 2017 (has links) (PDF)
The advantages of contemporary particle injectors are high bunch charges and good beam quality in the case of normal conducting RF guns and increased repetition rates in the one of DC injectors. The technological edge of the concept of superconducting radio frequency injectors is to combine the strengths of both these sides. As many future accelerator concepts, such as energy recovery linacs, high power free electron lasers and certain collider designs, demand particle sources with high bunch charges and high repetition rates combined, applying the superconductivity of the accelerator modules to the injector itself is the next logical step. However, emittance compensation — the cornerstone for high beam quality — in case of a superconducting injector is much more challenging than in the normal conducting one. The use of simple electromagnets generating a solenoid field around the gun’s resonator interferes with its superconducting state. Hence, it requires novel and sophisticated techniques to maintain the high energy gain inside the gun cavity, while at the same time alleviating the detrimental fast transverse emittance growth of the bunch. In the case of the ELBE accelerator at the Helmholtz-Zentrum Dresden-Rossendorf, a superconducting electron accelerator provides beam for several independent beamlines in continuous wave mode. The applications include IR to THz free electron lasers, neutron and positron generation, to Thompson backscattering with an inhouse TW laser, and hence, call for a flexible CW injector. Therefore, the development of a 3.5 cell superconducting electron gun was initiated in 1997. The focus of this thesis lies on three approaches of transverse emittance compensation for this photoinjector: RF focusing, the installation of a superconducting solenoid close to the cavity’s exit, and the introduction of a transverse electrical mode of the RF field in the resonator. All three methods are described in theory, examined by numerical simulation, and experimentally reviewed in the particular case of the ELBE SRF Gun II at HZDR and a copy of its niobium resonator at Thomas Jefferson National Laboratory, Newport News, VA, USA.
5

Návrh a realizace senzorického systému pro mobilní robot s využitím frameworku ROS / Sensor system design for mobile robot based on ROS framework

Tomáš, Petr January 2014 (has links)
The essence of this master thesis is design and implementation of sensor system based on robotic framework which is called ROS (Robot Operating System). The main task is to perform detailed analysis and test of capabilities of the framework with final implementation on specific robot application (sensor system) with following evaluation of applicability of the system in mobile robotics. As parallel aim is to create detailed general and practical guide for beginners with ROS which they are also beginners in Linux based operating systems.
6

Optimization of an SRF Gun for High Bunch Charge Applications at ELBE

Lu, Pengnan 29 May 2017 (has links) (PDF)
As a cutting-edge technology for photoinjectors, SRF guns are expected to provide CW electron beams with high bunch charge and low emittance, which is critical to the development of future FELs, ERLs and 4th/5th generation light sources. However, existing research has not explored the full potential of SRF guns as predicted by theory. Currently, the research activities at ELBE focus on solving technological challenges of a 3.5 cell SRF gun as well as applying it to high-bunch-charge experiments. This thesis aims to optimize the ELBE SRF gun and the relevant beam transport for future high-bunch-charge applications at pELBE, nELBE, TELBE and CBS experimental stations. Chapter 1 describes the demands of these applications on the SRF gun in detail. Chapter 2 outlines the development of a simulation tool based on ASTRA and Elegant, followed by the optimized gun parameters and the beam transport for the four experimental stations. Chapter 3 introduces beam diagnostic methods and data processing applied in this thesis. Chapter 4 presents results of experiments, including the pulse length measurement of the UV laser for generating electrons from the photcathode, the commissioning of ELBE SRF Gun II, a verification experiment on the LSC effect conducted at PITZ and a beam transport experiment with the bunch charge of 200 pC. Simulation results have determined the effect of each SRF gun parameter on the beam quality and have provided optimized settings according to the requirements in Chapter 1. Experimentally, the LSC effect was confirmed at PITZ, in agreement with simulations which indicated that LSC significantly influences beam quality. The performance of ELBE SRF Gun II was improved and a beam with a bunch charge of 200 pC and an emittance of 7.7 μm from ELBE SRF Gun II has been transported through ELBE without visible beam loss. The development of the simulation tool and beam diagnostics will serve further research at ELBE. Results of both simulations and experiments enrich the understanding of the existing SRF gun as well as the ELBE beamline and will guide continuing improvements. Already, ELBE SRF Gun II can deliver twice the bunch charge and lower emittance compared to the thermionic injector routinely used for ELBE. Ongoing modifications and development of the gun-cavity and photocathodes are expected to provide still further improvements. Progress on high-bunch-charge experiments at ELBE can be expected by applying the SRF gun.
7

Avskaffandet av revisionsplikten : en studie av SRF och Skatteverket / The abolition of the statutory auditing : a study of SRF and The Swedish Tax Agency

Gustafsson, Helena, Nilsson, Anna January 2010 (has links)
Bakgrund och problem: Idag förs det en diskussion om avskaffandet avrevisionsplikten. Den 7 september 2006 bestämde regeringen att reglerna om revision försmå bolag skulle ses över och granskas genom en utredning. Idag (2009) är företagenskyldiga att använda sig av en revisor där hon/han kontrollerar styrelsens och denverkställande direktörens förvaltning. Avskaffandet av revisionsplikten skulle innebäraatt 96 procent av Sveriges företag skulle slippa plikten att ha en revisor. Ett avskaffandekommer att beröra olika parter exempelvis företag, revisorer, redovisningskonsulter,Skatteverket, kunder, leverantörer etc.Problemet idag för de två aktörer som vi har valt att undersöka i den här uppsatsen, SRFoch Skatteverket är bland annat att skattefelet ökar och att det blir en negativ konsekvensför Skatteverket. För SRF kan arbetsuppgifterna öka och de anser att små företagarnaskulle gynnas av avskaffandet av revisionsplikten.Genom avskaffandet finns det en oro över att kvaliteten i redovisningen kommer attförsämras då företagen inte längre är skyldiga att använda sig av en revisor och får väljavilka tjänster de behöver och vill använda i företaget.Syfte: Med uppsatsen vill vi få en förståelse för hur SRF och Skatteverket påverkas avavskaffandet av revisionsplikten.Metod: Vi har använt oss av en kvalitativ metod i uppsatsen och har intervjuat tvårespondenter, en från vardera verksamhet. Respondenterna som vi har intervjuat har varitinformationsrika inom området vilket enligt oss har medfört en god validitet till studien.Genom intervjuerna har vi fått en förståelse för hur de olika aktörerna ser på förändringenoch hur de kommer att påverkas.Resultat och slutsatser: Resultatet från studien är att SRF kommer att påverkas merpositivt än Skatteverket som det ser ut. SRF kommer att få en ökad möjlighet att erbjudasina tjänster till följd av avskaffandet av revisionsplikten då företagen kan behövaaffärsrådgivning. För Skatteverket är det mer osäkert. Skattefelet kan komma att ökagenom avskaffandet av revisionsplikten då medvetna fel kan förekomma mer än idageftersom företagen själva får välja vilka tjänster de vill ha och inte längre är tvingade tilldem. Om revisionsplikten avskaffas bör en kontroll upprättas för de små företagen för attupprätthålla kvaliteten i redovisningen och för att inte öka skattefelen för Skatteverket.Det här innebär även en fördel och mer tjänster för SRF.
8

Development of superconducting thin films for use in SRF cavity applications

Wilde, Stuart January 2017 (has links)
Superconducting thin films are a possible alternative to bulk niobium for superconducting radio frequency cavity applications. Thin film cavities have produced larger Q0 than bulk niobium at low accelerating voltages [1], are less susceptible to external magnetic fields and therefore require less magnetic shielding than bulk niobium cavities [2] and can benefit from substrates which conduct heat more effectively than bulk niobium [3]. The major drawback for current thin film cavity technology is the large Q slope which is observed above accelerating gradients of 6 7 MV/m. The mechanism for the Q slope is not yet fully understood. Theories have been suggested but are not accepted by everyone within the scientific community [2, 4, 5, 6, 7]. It is assumed that a better understanding of the physical properties of superconducting films is required before the origins of the sharp Q slope can be elucidated. This study has been conducted to better understand the physical properties of superconducting thin films deposited by the magnetron sputtering process. In particular, superconducting niobium films have been deposited by high power impulse magnetron sputtering (HiPIMS) and tested by a wide range of analytical techniques as a function of the substrate temperature and applied bias during deposition. Analytical techniques which have been used include x-ray diffraction crystallography, Rutherford backscattering spectroscopy, scanning electron microscopy, residual resistance ratio, DC magnetometry and RF surface resistance measurements. Results showed that the application of an applied bias during deposition resulted in increased energy of bombarding ions and enhanced rates of surface diffusion and defect annihilation within the microstructure of a growing niobium film. However, large numbers of random complex defects formed once the energy of bombarding ions becomes too large. The systematic approach that was described to investigate the changing morphological and DC superconducting properties of deposited films, as a function of the applied bias, allowed the identification of which process conditions produce the fewest random complex defects. The same systematic investigations could be applied to any HiPIMS deposition facility to provide similar results. An important observation during the study is that the initial substrate conditions have a large influence on the properties of a deposited niobium film. Niobium films deposited onto polycrystalline copper substrate that was pre-annealed at 700 ˚C prior to deposition displayed more stable magnetic flux pinning, larger RRR and an enhanced resistance to the onset of flux penetration, than was observed for films deposited with a wide range of process conditions onto as received copper substrate. Superconductors other than niobium have been successfully deposited by HiPIMS and tested. Niobium titanium nitride thin films displayed a superconducting transition temperature up to 16.7 K, with a normal state resistivity as small as 45±7 μΩcm. The findings suggest that similar niobium titanium nitride thin films could produce smaller RF surface resistance than bulk niobium cavities at 4.2 K.
9

Profilin : From the Cell Edge into the Nucleus

Sadi, Sara January 2014 (has links)
Internal and external signaling dependent changes in cell behavior are directly linked to force-generating remodeling of the actin microfilament system which is juxtaposed to the inside of the plasma membrane. This dynamic filament system is involved in many processes in the cytoplasm and the nucleus of eukaryotic cells.   This thesis studies profilin, a regulator of actin filament dynamics which functions during incorporation of new actin molecules at growing filament ends at the cell periphery. Profilin is also present in the nucleus but its function is less well understood in this compartment. Here I present results concerning profilin and the activity of the transcription factor SRF, which is known to control the expression of actin and many actin-binding proteins in a process requiring the MRTF-A co-factor. MRTF-A binds monomeric actin and is released upon receptor mediated actin polymerization. Depletion of the two profilin isoforms I and IIa reduced MRTF-A/SRF-dependent transcription, most likely since the lack of profilin enable more MRTF-A to bind actin monomers and thereby prevent SRF-transcription. Interestingly profilin depletion also seemed to affect general transcription in the two cell lines investigated. In a separate study, a close connection between profilin, and possibly also profilin:actin, with microtubules was revealed. Microtubules are important for intracellular trafficking of vesicles as well as directional cell migration and the observation made here suggests the existence of a microtubule-associated platform for actin filaments formation. In congruence, the microtubule-associated actin nucleation promoting factor WHAMM was found to interact with profilin. Finally, the intracellular distribution of profilin was investigated by fluorescence microscopy using different peptide specific antibodies. Since these antibodies showed unique but varying results our work emphasizes common problems connected with this technique. / <p>At the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper1: Manuscript; Paper 2: Manuscript; Paper 3: Manuscript</p>
10

Impacts of land use change to short rotation forestry for bioenergy on soil greenhouse gas emissions and soil carbon

Parmar, Kim January 2016 (has links)
Short Rotation Forestry (SRF) for bioenergy could be used to meet biomass requirements and contribute to achieving renewable energy targets. As an important source of biomass it is important to gain an understanding of the implications of large-scale application of SRF on the soil-atmosphere greenhouse gas (GHG) exchange. This study examined the effects of land use change (LUC) from grassland to SRF on soil fluxes of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2), and the important drivers in action. Examining soils from a range of sites across the UK, CO2 emission potentials were reduced under SRF with differences between coniferous and broadleaved transitions; these changes were found to be related to changes in soil pH and microbial biomass. However, there were limited effects of SRF tree species type on CH4 and N2O fluxes. A detailed study at an experimental SRF site over 16 months demonstrated a reduction in CH4 and net CO2 emissions from soils under SRF and revealed intriguing temporal dynamics of N2O under Sitka spruce and common alder. A significant proportion of the variation in soil N2O fluxes was attributed to differences between tree species, water table depth, spatial effects, and their interactions. The effects of microtopography (ridges, troughs, flats), and its interactions with water table depth on soil GHG fluxes under different tree species was tested using mesocosm cores collected in the field. Microtopography did not significantly affect soil GHG fluxes but trends suggested that considering this spatial factor in sampling regimes could be important. N2O fluxes from Sitka spruce soils did not respond to water table depth manipulation in the laboratory suggesting that they may also be determined by tree-driven nitrogen (N) availability, with other research showing N deposition to be higher in coniferous plantations. An N addition experiment lead to increased N2O emissions with greatest relative response in the Sitka spruce soils. Overall, LUC from rough grassland to SRF resulted in a reduction in soil CH4 emissions, increased N2O emissions and a reduction or no change in net CO2 emissions. These changes in emissions were influenced both directly and indirectly by tree species type with Sitka spruce having the greatest effect on N2O in particular, thus highlighting the importance of considering soil N2O emissions in any life cycle analysis or GHG budgets of LUC to SRF for bioenergy. This research can help inform decisions around SRF tree species selection in future large-scale bioenergy planting.

Page generated in 0.0254 seconds