Return to search

Étude de modèles de champ de phase de type Caginalp / Study of Caginalp type phase-field models

Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux modèles : le premier étant une généralisation du modèle de champ de phase de Caginalp basée sur une généralisation de la loi de Maxwell-Cattaneo et le second une généralisation provenant de la théorie de la conduction de chaleur introduite par Chen et Gurtin. L'étude du premier modèle est faite aussi bien dans un domaine borné (avec un potentiel régulier puis dans le cas d'un potentiel non régulier), que dans un domaine non borné, en l'occurrence R3. Le second modèle est un problème de champ de phase avec un couplage (linéaire et non linéaire). Tout d'abord, l'existence, l'unicité et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants et compacts attractifs est établie, assurant ainsi l'existence de l'attracteur global. Enfin, dans certains cas, l'existence d'attracteurs exponentiels, ainsi que le comportement spatial des solutions lorsque le domaine spatial est un cylindre semi-infini tri-dimensionnel, sont analysés. / This thesis report is dedicated to the study of Caginalp type phase-field Models. Here, we consider two models: the first one being a generalization of the field phase Caginalp based on a generalization of the Maxwell-Cattaneo law and the second one coming from the theory of heat conduction involving two temperatures. We study the first model in bounded (with regular and irregular potentials) and unbounded (i.e. R3) domains. The second model is a phase-field one with coupling term (linear and nonlinear). Firstly, the existence, uniqueness and regularity of solutions are analyzed by means of classical arguments. Secondly, the existence of bounded absorbing sets and attractive compact is established. Such results ensures the existence of the global attractor. Finally, in some cases, the existence of exponential attractors, as well as the spatial behavior of solutions when the spatial domain is a three-dimensional semi-infinite cylinder, are analyzed.

Identiferoai:union.ndltd.org:theses.fr/2013POIT2260
Date03 May 2013
CreatorsDoumbé Bangola, Brice Landry
ContributorsPoitiers, Miranville, Alain
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.1672 seconds