Le contexte de cette thèse couvre les dispositifs photoniques hybrides III-V sur silicium. L’étude porte sur l’intégration par collage de matériau à base d'InP sur le silicium, puis la conception d’un guide optique comportant une nanostructuration qui permettra la sélection en longueur d’onde dans un laser DFB hybride. Enfin, on étudie les étapes technologiques de fabrication d’un laser hybride injecté électriquement fonctionnant dans le domaine spectral 1.55µm, et on caractérise les dispositifs. Pour associer les matériaux III-V sur Si, nous avons développé le collage sans couche intermédiaire que l’on nomme collage hétéroépitaxial ou oxide-free. Ce collage est reporté dans la littérature comme présentant une meilleure qualité électrique. Nous avons établi les conditions de préparation permettant d’obtenir des surfaces parfaitement désoxydées, et les conditions de recuit conduisant à une interface hybride sans oxyde et sans dislocation. Mais ce recuit est réalisé à température assez élevée (~450-500°C). Nous avons alors développé le collage avec une fine couche intermédiaire d’oxyde réalisé à plus faible température -300°C- qui présente l'avantage d'être compatible avec la technologie CMOS. Nous avons étudié différentes approches pour élaborer et activer une couche d’oxyde très fine (~3nm), de façon à obtenir une surface collée sans zones localement non collées. Le collage est dans les deux cas réalisé sous vide dans un équipement de type Bonder Suss SB6e. La qualité structurale de l’interface a été observée par STEM et la qualité mécanique du joint de collage a été caractérisée par indentation. Une méthode originale de mesure quantitative et locale de l’énergie du joint de collage a été développée. La qualité optique des couches collées a été étudiée par la mesure de la photoluminescence de puits quantiques placés proches du joint d’interface. En conséquence du collage sans couche intermédiaire ou avec une couche très fine, le design du mode optique est de type double-cœur, qui ne nécessite pas de taper. Le guide optique Si est de type shallow ridge, le confinement latéral étant assuré par un matériau nanostructuré à une période sub-longueur d’onde. Ce matériau fonctionne comme un matériau effectif uniaxe pour lequel on a calculé les indices optiques ordinaire et extraordinaire selon la géométrie de la nanostructuration. On peut rajouter sur cette nanostructuration une super-périodicité qui conduit à un fonctionnement sélectif en longueur d’onde. Le comportement modal du guide est simulé à l'aide du logiciel COMSOL Multiphysics, le comportement spectral est simulé par FTDT 3D. Nous avons validé la pertinence de ce design en mesurant la transmission de guides hybrides. Ce design sera inclus dans un laser et permettra d’obtenir une émission monofréquence de type DFB. Nous avons développé les étapes technologiques nécessaires à la fabrication d’un laser hybride à base d'InP sur Silicium fonctionnant en injection électrique. Nous avons mis en oeuvre de nombreuses techniques, et développé plusieurs procédés spécifiques, en particulier, des procédés de gravure sèche de type Inductive Coupled Plasma Reactive Ion Etching ICP-RIE pour la gravure de la nanostructuration dans le silicium, et pour la gravure du mésa du laser. La présence des 2 matériaux III-V et Si dans le dispositif hybride rend ces étapes complexes. Les premiers résultats peuvent être améliorés en optimisant la technologie des contacts. Un design permettant de s’affranchir de la pénalité thermique présenté par tous les dispositifs ayant les 2 contacts électriques du coté du matériau III-V a été proposé, exploitant le passage du courant à l’interface hybride III-V / Si, ce qui est possible dans le cas du collage oxide-free. Cette approche ouvre des perspectives d’intégration au-delà de la photonique. / This work contributes to the general context of III-V materials on Silicon hybrid devices for optical integrated functions, mainly emission/amplification at 1.55µm. Devices are considered for operation under electrical injection, reaching performances relevant for data transfer application. The main three contributions of this work concern: (i) bonding InP-based materials on Si, (ii) nanostructuration of the Si guiding layer for spatial and spectral control of the guided mode and (iii) technology of an hybrid electrically injected laser, with a special attention to the thermal budget. Bonding has been investigated following two approaches. The first one we call heterohepitaxial or oxide-free bonding, is performed without any intermediate layer at a temperature ~450°C. This approach has the great advantage allowing electrical transport across the interface, as reported in the literature. We have developed oxide-free surface preparation for both materials, mainly InP-based layers, and established bonding parameter processing. An in-depth STEM and RX structural characterization has demonstrated an oxide-free reconstructed interface without any dislocation except on one or two atomic layers which accommodate the large lattice mismatch (8.1%) between InP and Si. Photoluminescence of quantum wells intentionally grown close to the interface has shown no degradation. We have also developed an oxide-based bonding process operated at 300°C in order to be compatible with CMOS processing. The original ozone activation of the very thin (~5nm) oxide layer we have proposed demonstrates a bonding surface without any unbonded area due to degassing under annealing. We have developed an original method based on nanoindentation characterization in order to obtain a quantitative and local value of the surface bonding energy. Related to the absence or to the very thin intermediate layer between the two materials, our modal design is based on a double core structure, where most of the optical mode is confined in the Si guiding layer, and no taper is required. The Si waveguide on top of the SOI stack is a shallow ridge. A nanostructured material on both sides of the waveguide core ensures the lateral confinement, the nanostructuration geometry being at a sub-wavelength period in order to operate this material well below its photonic gap. It behaves as an uniaxial material with ordinary and extraordinary indices calculated according to the structuration geometry. Such a structuration allows modal and spectral control of the guided mode. 3D modal and spectral simulation have been performed. We have demonstrated, on a double-period structuration, a wavelength selective operation of hybrid optical waveguides. Such a double-period geometry could be included in a laser design for DFB operation. This nanostructuration has larger potential application such as coupled waveguides arrays or selective resonators. We have developed all the technological processing steps for an electrically injected hybrid laser fabrication. Main developments concern dry etching, performed with the Inductive Coupled Plasma Reactive Ion Etching ICP-RIE technique of both the nanostructuration of the Silicon material, and the mesa of the hybrid laser. Efficient electrical contacts fabrication is also a complex step. First lasers operating performances could be improved. We have investigated a specific design in order to overcome the thermal penalty encountered by all the hybrid devices. This penalty is due to the thick buried oxide layer of the SOI stack that prevents heating related to the current flow to be dissipated. Taking advantage of the electrical transport we have shown at the oxide-free interface, we propose a design where the n-contact is defined on the guiding Si layer, suppressing thermal heating under electrical operation. Such an approach is very promising for densely packed hybrid devices integrated with associated electronic driving elements on Si.
Identifer | oai:union.ndltd.org:theses.fr/2014PA112363 |
Date | 01 December 2014 |
Creators | Itawi, Ahmad |
Contributors | Paris 11, Talneau, Anne |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0027 seconds