• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intégration d’un laser hybride DBR III-V/Si en face arrière d’une puce photonique / Integration of an hybrid III-V/Si DBR laser on the Back-Side of a photonic die

Durel, Jocelyn 02 June 2017 (has links)
Ces dernières années, la photonique sur silicium est apparue comme une solution prometteuse pour la fabrication en grande série d'émetteurs-récepteurs optiques répondant aux besoins des centres de données en termes d'augmentation du débit et de coûts réduits. Plusieurs plateformes de photonique sur silicium ont été démontrées en utilisant la technologie Si standard. Bien que ces plateformes diffèrent à bien des égards, elles manquent toutes d'une source de lumière intégrée monolithiquement. Pour résoudre ce problème, l'approche la plus couramment proposée consiste à coller un empilement InP sur une plaque SOI afin de fabriquer un laser hybride III-V/Si. Cependant, aucune des démonstrations n'a été réalisée avec un empilement d’interconnexions métalliques BEOL (Back-End Of Line) standard, empêchant ainsi une intégration électronique-photonique appropriée. Pour résoudre le problème topographique posé par cet ajout de couches, un nouveau schéma d'intégration, appelé intégration Back-Side, a été développé et est présenté dans ce document.Tout d'abord, le contexte de cette étude, un état de l’art ainsi que la présentation du Back-Side est abordé. La nouveauté apportée par cette intégration, à savoir le collage du III-V sur la face arrière du SOI après la structuration de celui-ci, y est alors détaillé.Le bon fonctionnement d’un élément essentiel à la puce photonique, le réseau de couplage, est ensuite abordé à travers des simulations, sa fabrication et des caractérisations optiques. Nous avons prouvé que, sous certaines conditions, ce dispositif possède les mêmes performances mesurées en Back-Side qu’en Front-Side.Le principe de fonctionnement d’une cavité oscillante puis les différents modules composants le laser hybride sont détaillés. Le laser étudié est une cavité hybride DBR (Distributed Bragg Reflector) III-V/Si. Afin d'augmenter le confinement du mode dans le MQWs (Multi Quantum Wells) et donc d'assurer un gain optique élevé, le mode optique est progressivement transféré entre le guide III-V et le guide silicium du laser hybride par des épanouisseurs adiabatiques, structurés dans le SOI de part et d’autre de la zone de gain, pour être enfin réfléchi par les miroirs DBR dans le silicium.Enfin, son processus de fabrication est explicité avant que ses caractérisations opto-électroniques ne soient finalement présentées. Les lasers à pompage électrique ont été testés dans des conditions de courant continu et la lumière générée a été collectée à travers un réseau de couplage par une fibre optique externe multimode. Les pertes de couplage ont été mesurées supérieures à 10 dB. La puissance de sortie est de 1,15 mW à un courant d'injection de 200 mA. Le seuil laser est de 45 mA, ce qui correspond à une densité de courant de 1,5 kA / cm2 et la résistance série des contacts laser est d'environ 9 Ω. La tension de seuil est de 1,45 V. Les spectres lasers reflètent un fonctionnement mono-fréquence, pour différents courants d'injection, avec une longueur d'onde centrale correspondant à la longueur d’onde de Bragg des miroirs. Un SMSR (Side Mode Suppression Ratio) de plus de 35 dB a été mesuré, ce qui prouve la bonne pureté spectrale de ce laser. Un décalage de la longueur d'onde de 4 nm a été observé en injectant un courant de 20 mA dans des chaufferettes métalliques au-dessus des DBRs.L'intégration monolithique d'un laser DBR hybride en face arrière d'une plaque SOI, entièrement compatible CMOS, a été démontrée pour la première fois, la mise en place d'interconnexions électriques compatibles CMOS et de sources optiques sur une même puce a pu être réalisée. Ce dispositif ouvre la voie à un émetteur-récepteur optique entièrement intégré sur une plateforme Si. / Recently, Silicon Photonics has emerged as a solution for the mass manufacturing of optical transceivers addressing datacenter’s needs in terms of increasing data-rate and reduced cost. Several Silicon-Photonics platforms have been demonstrated using standard Si technology. While these platforms differ in many regards, they all lack a solution for a monolithically integrated light source. To solve this problem, the most commonly proposed approach consists in bonding an InP-stack onto a Si-wafer in order to fabricate a Hybrid III-V/Si laser. However, none of those demonstrations have been made with a standard CMOS-BEOL, preventing a proper electronic-photonic integration. To solve the topographical problem induced by the additional layers, a new integration scheme, called Back-Side, has been developed and is presented in this document.First, the context of this study, a state of the art as well as the presentation of the Back-Side is discussed. The innovation brought by this integration, namely the bonding of the III-V on the back side of the SOI after the structuring of the latter, is then detailed.The correct behavior of a key element to the photonic chip, the grating coupler, is then treated through simulations, fabrication and optical characterizations. We have proved that, under specific conditions, this device has the same measured performances in Back-Side and in Front-Side.The principle of an optical oscillator and then the various modules composing the hybrid laser are then detailed. The implemented laser is based on a hybrid DBR (Distributed Bragg Reflector) III-V/Si cavity. In order to increase the mode confinement in the MQWS (Multi Quantum Wells) and hence ensure a high optical gain, the optical mode is gradually transferred between the III-V waveguide and the silicon waveguide of the hybrid laser by adiabatic tapers, patterned on both sides of the gain zone, to finally be reflected by the mirrors DBR in the silicon.Finally, its manufacturing process is explained before its opto-electronic characterizations are presented. The electrically pumped lasers have been tested under continuous-wave current conditions and the generated light has been collected through the grating coupler to a multi-mode fiber. The fiber coupling losses has been measured to be higher than 10 dB. The output power is up to 1.15 mW at an injection current of 200 mA. The lasing threshold is 45 mA which corresponds to a current density of 1.5 kA/cm2 and the series resistance of the laser contacts is approximately 9 . The threshold voltage is 1.45 V.The laser spectra reflect its single-wavelength laser operation, for different injection currents, with a central wavelength corresponding to the Bragg wavelength of the mirrors. A Side Mode Suppression Ratio (SMSR) of more than 35 dB has been measured. A 4 nm wavelength shift has been observed when injecting 20 mA into both metallic heaters above DBRs.The monolithic integration of a fully CMOS compatible hybrid DBR laser on the backside of a SOI wafer being demonstrated for the first time, implementing CMOS compatible electric interconnects and optical sources on a same chip has could be achieved. This device opens the route to a fully integrated optical transceiver on a Si platform.
2

Dispositifs photoniques hybrides sur Silicium comportant des guides nano-structurés : conception, fabrication et caractérisation / Hybrid photonic devices on silicon including nanostructured waveguides : conception, fabrication and characterization

Itawi, Ahmad 01 December 2014 (has links)
Le contexte de cette thèse couvre les dispositifs photoniques hybrides III-V sur silicium. L’étude porte sur l’intégration par collage de matériau à base d'InP sur le silicium, puis la conception d’un guide optique comportant une nanostructuration qui permettra la sélection en longueur d’onde dans un laser DFB hybride. Enfin, on étudie les étapes technologiques de fabrication d’un laser hybride injecté électriquement fonctionnant dans le domaine spectral 1.55µm, et on caractérise les dispositifs. Pour associer les matériaux III-V sur Si, nous avons développé le collage sans couche intermédiaire que l’on nomme collage hétéroépitaxial ou oxide-free. Ce collage est reporté dans la littérature comme présentant une meilleure qualité électrique. Nous avons établi les conditions de préparation permettant d’obtenir des surfaces parfaitement désoxydées, et les conditions de recuit conduisant à une interface hybride sans oxyde et sans dislocation. Mais ce recuit est réalisé à température assez élevée (~450-500°C). Nous avons alors développé le collage avec une fine couche intermédiaire d’oxyde réalisé à plus faible température -300°C- qui présente l'avantage d'être compatible avec la technologie CMOS. Nous avons étudié différentes approches pour élaborer et activer une couche d’oxyde très fine (~3nm), de façon à obtenir une surface collée sans zones localement non collées. Le collage est dans les deux cas réalisé sous vide dans un équipement de type Bonder Suss SB6e. La qualité structurale de l’interface a été observée par STEM et la qualité mécanique du joint de collage a été caractérisée par indentation. Une méthode originale de mesure quantitative et locale de l’énergie du joint de collage a été développée. La qualité optique des couches collées a été étudiée par la mesure de la photoluminescence de puits quantiques placés proches du joint d’interface. En conséquence du collage sans couche intermédiaire ou avec une couche très fine, le design du mode optique est de type double-cœur, qui ne nécessite pas de taper. Le guide optique Si est de type shallow ridge, le confinement latéral étant assuré par un matériau nanostructuré à une période sub-longueur d’onde. Ce matériau fonctionne comme un matériau effectif uniaxe pour lequel on a calculé les indices optiques ordinaire et extraordinaire selon la géométrie de la nanostructuration. On peut rajouter sur cette nanostructuration une super-périodicité qui conduit à un fonctionnement sélectif en longueur d’onde. Le comportement modal du guide est simulé à l'aide du logiciel COMSOL Multiphysics, le comportement spectral est simulé par FTDT 3D. Nous avons validé la pertinence de ce design en mesurant la transmission de guides hybrides. Ce design sera inclus dans un laser et permettra d’obtenir une émission monofréquence de type DFB. Nous avons développé les étapes technologiques nécessaires à la fabrication d’un laser hybride à base d'InP sur Silicium fonctionnant en injection électrique. Nous avons mis en oeuvre de nombreuses techniques, et développé plusieurs procédés spécifiques, en particulier, des procédés de gravure sèche de type Inductive Coupled Plasma Reactive Ion Etching ICP-RIE pour la gravure de la nanostructuration dans le silicium, et pour la gravure du mésa du laser. La présence des 2 matériaux III-V et Si dans le dispositif hybride rend ces étapes complexes. Les premiers résultats peuvent être améliorés en optimisant la technologie des contacts. Un design permettant de s’affranchir de la pénalité thermique présenté par tous les dispositifs ayant les 2 contacts électriques du coté du matériau III-V a été proposé, exploitant le passage du courant à l’interface hybride III-V / Si, ce qui est possible dans le cas du collage oxide-free. Cette approche ouvre des perspectives d’intégration au-delà de la photonique. / This work contributes to the general context of III-V materials on Silicon hybrid devices for optical integrated functions, mainly emission/amplification at 1.55µm. Devices are considered for operation under electrical injection, reaching performances relevant for data transfer application. The main three contributions of this work concern: (i) bonding InP-based materials on Si, (ii) nanostructuration of the Si guiding layer for spatial and spectral control of the guided mode and (iii) technology of an hybrid electrically injected laser, with a special attention to the thermal budget. Bonding has been investigated following two approaches. The first one we call heterohepitaxial or oxide-free bonding, is performed without any intermediate layer at a temperature ~450°C. This approach has the great advantage allowing electrical transport across the interface, as reported in the literature. We have developed oxide-free surface preparation for both materials, mainly InP-based layers, and established bonding parameter processing. An in-depth STEM and RX structural characterization has demonstrated an oxide-free reconstructed interface without any dislocation except on one or two atomic layers which accommodate the large lattice mismatch (8.1%) between InP and Si. Photoluminescence of quantum wells intentionally grown close to the interface has shown no degradation. We have also developed an oxide-based bonding process operated at 300°C in order to be compatible with CMOS processing. The original ozone activation of the very thin (~5nm) oxide layer we have proposed demonstrates a bonding surface without any unbonded area due to degassing under annealing. We have developed an original method based on nanoindentation characterization in order to obtain a quantitative and local value of the surface bonding energy. Related to the absence or to the very thin intermediate layer between the two materials, our modal design is based on a double core structure, where most of the optical mode is confined in the Si guiding layer, and no taper is required. The Si waveguide on top of the SOI stack is a shallow ridge. A nanostructured material on both sides of the waveguide core ensures the lateral confinement, the nanostructuration geometry being at a sub-wavelength period in order to operate this material well below its photonic gap. It behaves as an uniaxial material with ordinary and extraordinary indices calculated according to the structuration geometry. Such a structuration allows modal and spectral control of the guided mode. 3D modal and spectral simulation have been performed. We have demonstrated, on a double-period structuration, a wavelength selective operation of hybrid optical waveguides. Such a double-period geometry could be included in a laser design for DFB operation. This nanostructuration has larger potential application such as coupled waveguides arrays or selective resonators. We have developed all the technological processing steps for an electrically injected hybrid laser fabrication. Main developments concern dry etching, performed with the Inductive Coupled Plasma Reactive Ion Etching ICP-RIE technique of both the nanostructuration of the Silicon material, and the mesa of the hybrid laser. Efficient electrical contacts fabrication is also a complex step. First lasers operating performances could be improved. We have investigated a specific design in order to overcome the thermal penalty encountered by all the hybrid devices. This penalty is due to the thick buried oxide layer of the SOI stack that prevents heating related to the current flow to be dissipated. Taking advantage of the electrical transport we have shown at the oxide-free interface, we propose a design where the n-contact is defined on the guiding Si layer, suppressing thermal heating under electrical operation. Such an approach is very promising for densely packed hybrid devices integrated with associated electronic driving elements on Si.

Page generated in 0.0678 seconds