Return to search

Building graph models of oncogenesis by using microRNA expression data

<p>MicroRNAs (miRNAs) are a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Several groups pointed out that miRNAs play a major role in several diseases, including cancer. This is assumed since the expression level of several miRNAs differs between normal and cancerous cells. Further, it has been shown that miRNAs are involved in cell proliferation and cell death.</p><p>Because of this role it is suspected that miRNAs could serve as biomarkers to improve tumor classification, therapy selection, or prediction of survival. In this context, it is questioned, among other things, whether miRNA deregulations in cancer cells occur according to some pattern or in a rather random order. With this work we contribute to answering this question by adapting two approaches (Beerenwinkel et al. (J Comput Biol, 2005) and Höglund et al. (Gene Chromosome Canc, 2001)), developed to derive graph models of oncogenesis for chromosomal imbalances, to miRNA expression data and applying them to a breast cancer data set. Further, we evaluated the results by comparing them to results derived from randomly altered versions of the used data set.</p><p>We could show that miRNA deregulations most likely follow a rough temporal order, i.e. some deregulations occur early and some occur late in cancer progression. Thus, it seems to be possible that the expression level of some miRNAs can be used as indicator for the stage of a tumor. Further, our results suggest that the over expression of mir-21 as well as mir-102 are initial events in breast cancer oncogenesis.</p><p>Additionally, we identified a set of miRNAs showing a cluster-like behavior, i.e. their deregulations often occur together in a tumor, but other deregulations are less frequently present. These miRNAs are let-7d, mir-10b, mir-125a, mir-125b, mir-145, mir-206, and mir-210.</p><p>Further, we could confirm the strong relationship between the expression of mir-125a and mir-125b.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:his-1167
Date January 2008
CreatorsZichner, Thomas
PublisherUniversity of Skövde, School of Humanities and Informatics, Skövde : Högskolan i Skövde
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, text

Page generated in 0.0019 seconds